Description of Ore Particles from X-Ray Microtomography (XMT) Images, Supported by Scanning Electron Microscope (SEM)-Based Image Analysis

2018 ◽  
Vol 24 (5) ◽  
pp. 461-470 ◽  
Author(s):  
Orkun Furat ◽  
Thomas Leißner ◽  
Ralf Ditscherlein ◽  
Ondřej Šedivý ◽  
Matthias Weber ◽  
...  

AbstractIn this paper, three-dimensional (3D) image data of ore particle systems is investigated. By combining X-ray microtomography with scanning electron microscope (SEM)-based image analysis, additional information about the mineralogical composition from certain planar sections can be gained. For the analysis of tomographic images of particle systems the extraction of single particles is essential. This is performed with a marker-based watershed algorithm and a post-processing step utilizing a neural network to reduce oversegmentation. The results are validated by comparing the 3D particle-wise segmentation empirically with 2D SEM images, which have been obtained with a different imaging process and segmentation algorithm. Finally, a stereological application is shown, in which planar SEM images are embedded into the tomographic 3D image. This allows the estimation of local X-ray attenuation coefficients, which are material-specific quantities, in the entire tomographic image.

2013 ◽  
Vol 562-565 ◽  
pp. 136-140 ◽  
Author(s):  
Zhao Tang Yang ◽  
Xiao Jiang Liu ◽  
Jing Song Liu ◽  
Xiu Li Feng

Single phase pyrite has been successfully prepared via the reaction of FeSO4·7H2O, S and Na2S·9H2O using hydrothermal method. The X-ray powder diffraction measurements confirm the formation of iron disulfides in the pH range of 1-12. Marcasite is formed at pH<4, the marcasite contents in the final products increasing with decreasing pH; when the pH is higher than 4, the final product is single phase pyrite. Scanning electron microscope (SEM) images reveal that both the pH and temperatures have significant effects on the size and morphology of final products. Pyrite micro-nanocubes of 200-400nm in length were synthesized at pH=9. Detailed information of the experimental results are analyzed in the results and discussion part.


10.30544/99 ◽  
2015 ◽  
Vol 21 (2) ◽  
pp. 89-100
Author(s):  
N. NayebPashaee ◽  
A.M. Aarabi ◽  
H. Sarpoolaky ◽  
H. Vafaeenezhad

In this research, the effects of Zn on microstructure and color developments of the copper reduction glaze were investigated. Structural and colorimetric characteristics of the glaze surface are examined by X-ray diffraction, scanning electron microscope (SEM) equipped with electron dispersive spectroscopy (EDS) and Telespectrophotometery. Results indicate in samples consisted of more than 7 % of zinc amount, crystalline structures containing Willemite and synthesized copper. XRD indicate that, 14 wt% of zinc oxide is enough to form Willemite. In all samples, duration of process was sufficient to form the metallic particles. SEM images confirm presence of copper nanosphere-laths of Willemite and surrounding glaze.


2017 ◽  
Vol 23 (5) ◽  
pp. 967-977 ◽  
Author(s):  
Vipin N. Tondare ◽  
John S. Villarrubia ◽  
András E. Vladár

AbstractThree-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.


2020 ◽  
Vol 30 (2) ◽  
pp. 65-79
Author(s):  
Mohd Sanusi S. Ahamad ◽  
Elly Nur Myaisara Maizul

AbstractThe microstructural evaluation of complex cementitious materials has been made possible by the microscopic imaging tools such as Scanning Electron Microscope (SEM) and X-Ray Microanalysis. Particularly, the application of concrete SEM imaging and digital image analysis have become common in the analysis and mapping of concrete technology. In this study, six samples of two-dimensional (2D) SEM images were spatially resampled to produce Geo-referenced SEM sample images. Subsequently, they were analyzed and the intensity histogram plot was produced to facilitate visual interpretation. The consecutive digital image analysis performed was the enhancement and noise removal process using two filtering methods i.e. median and adaptive box filter. The filtered resampled images, then undergone the unsupervised K-Means classification process to collectively separate each individual pixel corresponds to the spectral data. By spatial segmentation of K-Means algorithms, the cluster groups generated were carefully reviewed before proceeding to the final analysis. From the resulting data, the mapping of the spatial distribution of k-cluster and the quantification of micro-cracks (voids) were performed. The results of the SEM images (1st - 4th sample) showed a higher percentage of k-cluster data indicating a good correlation with the major elemental composition of EDX analysis, namely Oxide (O), Silicon (Si) and Carbon (C). Meanwhile, the subjective visual assessment of the image (5th and 6th sample) has confirmed the micro-crack developments on the concrete SEM images upon which the crack density was 3.02 % and 1.30 %, respectively.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


Arena Tekstil ◽  
2013 ◽  
Vol 28 (1) ◽  
Author(s):  
Maya Komalasari ◽  
Bambang Sunendar

Partikel nano TiO2 berbasis air dengan pH basa telah berhasil disintesis dengan menggunakan metode sol-gel dan diimobilisasi pada kain kapas dengan menggunakan kitosan sebagai zat pengikat silang. Sintesis dilakukan  dengan prekursor TiCl4 pada konsentrasi 0,3 M, 0,5 M dan 1 M, dan menggunakan templat kanji dengan proses kalsinasi pada suhu 500˚C selama 2 jam. Partikel nano TiO2 diaplikasikan ke kain kapas dengan metoda pad-dry-cure dan menggunakan kitosan sebagai crosslinking agent. Berdasarkan hasil Scanning Electron Microscope (SEM),diketahui bahwa morfologi partikel TiO2 berbentuk spherical dengan ukuran nano (kurang dari 100 nm). Karakterisasi X-Ray Diffraction (XRD) menunjukkan adanya tiga tipe struktur kristal utama, yaitu (100), (101) dan (102) dengan fasa kristal yang terbentuk adalah anatase dan rutile. Pada karakterisasi menggunakan SEM terhadap serbuk dari TiO2 yang telah diaplikasikan ke permukaan kain kapas, terlihat adanya imobilisasi partikel nano TiO2 melalui ikatan hidrogen silang dengan kitosan pada kain kapas. Hasil analisa tersebut kemudian dikonfirmasi dengan FTIR (Fourier Transform Infra Red) yang hasilnya memperlihatkan puncak serapan pada bilangan gelombang 3495 cm-1, 2546 cm-1, dan 511 cm-1,  yang masing-masing diasumsikan sebagai adanya vibrasi gugus fungsi O-H, N-H dan Ti-O-Ti. Hasil SEM menunjukkan pula bahwa kristal nano yang terbentuk diantaranya adalah fasa rutile , yang berdasarkan literatur terbukti dapatberfungsi sebagai anti UV.


Sign in / Sign up

Export Citation Format

Share Document