Extremely High Compression and Identification of Fingerprint Images Using SA4 Multiwavelet Transform

Author(s):  
N. R. Rema ◽  
P. Mythili

The aim of any fingerprint image compression technique is to achieve a maximum amount of compression with an adequate quality compressed image which is suitable for fingerprint recognition. Currently available techniques in the literature provide 100% recognition only up to a compression ratio of 180:1. The performance of any identification technique inherently depends on the techniques with which images are compressed. To improve the identification accuracy while the images are highly compressed, a multiwavelet-based identification approach is proposed in this paper. Both decimated and undecimated coefficients of SA4 (Symmetric Antisymmetric) multiwavelet are used as features for identification. A study is conducted on the identification performance of the multiwavelet transform with various sizes of images compressed using both wavelets and multiwavelets for fair comparison. It was noted that for images with size power of 2, the decimated multiwavelet-based compression and identification give a better performance compared to other combinations of compression/identification techniques whereas for images with size not a power of 2, the undecimated multiwavelet transform gives a better performance compared to other techniques. A 100% identification accuracy was achieved for the images from NIST-4, NITGEN, FVC2002DB3_B, FVC2004DB2_B and FVC2004DB1_B databases for compression ratios up to 520:1, 210:1, 445:1, 545:1 and 1995:1, respectively.

1998 ◽  
Vol 120 (2) ◽  
pp. 331-338 ◽  
Author(s):  
Y. Ren ◽  
C. F. Beards

Almost all real-life structures are assembled from components connected by various types of joints. Unlike many other parts, the dynamic properties of a joint are difficult to model analytically. An alternative approach for establishing a theoretical model of a joint is to extract the model parameters from experimental data using joint identification techniques. The accuracy of the identification is significantly affected by the properties of the joints themselves. If a joint is stiff, its properties are often difficult to identify accurately. This is because the responses at both ends of the joint are linearly-dependent. To make things worse, the existence of a stiff joint can also affect the accuracy of identification of other effective joints (the term “effective joints” in this paper refers to those joints which otherwise can be identified accurately). This problem is tackled by coupling these stiff joints using a generalized coupling technique, and then the properties of the remaining joints are identified using a joint identification technique. The accuracy of the joint identification can usually be improved by using this approach. Both numerically simulated and experimental results are presented.


Author(s):  
Anqi Zhang ◽  
Yihai He ◽  
Chengcheng Wang ◽  
Jishan Zhang ◽  
Zixuan Zhang

Reliability is reflected in product during manufacturing. However, due to uncontrollable factors during production, product reliability may degrade substantially after manufacturing. Thus, root cause analysis is important in identifying vulnerable parameters to prevent the product reliability degradation in manufacturing. Therefore, a novel root cause identification approach based on quality function deployment (QFD) and extended risk priority number (RPN) is proposed to prevent the degradation of product manufacturing reliability. First, the connotation of product manufacturing reliability and its degradation mechanism are expounded. Second, the associated tree of the root cause of product manufacturing reliability degradation is established using the waterfall decomposition of QFD. Third, the classic RPN is extended to focus on importance to reliability characteristics, probability, and un-detectability. Furthermore, fuzzy linguistic is adopted and the integrated RPN is calculated to determine the risk of root causes. Therefore, a risk-oriented root cause identification technique of product manufacturing reliability degradation is proposed using RPN. Finally, a root cause identification of an engine component is presented to verify the effectiveness of this method. Results show that the proposed approach can identify the root cause objectively and provide reference for reliability control during production.


Author(s):  
Saifullah Khalid

Fingerprint recognition systems are widely used in the field of biometrics. Many existing fingerprint sensors acquire fingerprint images as the user's fingerprint is contacted on a solid flat sensor. Because of this contact, input images from the same finger can be quite different and there are latent fingerprint issues that can lead to forgery and hygienic problems. For these reasons, a touchless fingerprint recognition system has been investigated, in which a fingerprint image can be captured without contact. While this system can solve the problems which arise through contact of the user's finger, other challenges emerge.


2015 ◽  
Vol 77 (20) ◽  
Author(s):  
Abdulrahman A. A. Emhemed ◽  
Rosbi Mamat ◽  
Ahmad ‘Athif Mohd Faudzi

The aim of this paper is to present experimental, empirical and analytic identification techniques, known as non-parametric techniques. Poor dynamics and high nonlinearities are parts of the difficulties in the control of pneumatic actuator functions, which make the identification technique very challenging. Firstly, the step response experimental data is collected to obtain real-time force model of the intelligent pneumatic actuator (IPA). The IPA plant and Personal Computer (PC) communicate through Data Acquisition (DAQ) card over MATLAB software. The second method is approximating the process by curve reaction of a first-order plus delay process, and the third method uses the equivalent n order process with PTn model parameters. The obtained results have been compared with the previous study, achieved based on force system identification of IPA obtained by the (Auto-Regressive model with eXogenous) ARX model. The models developed using non-parameters identification techniques have good responses and their responses are close to the model identified using the ARX system identification model. The controller approved the success of the identification technique with good performance. This means the Non-Parametric techniques are strongly recommended, suitable, and feasible to use to analyze and design the force controller of IPA system. The techniques are thus very suitable to identify the real IPA plant and achieve widespread industrial acceptance.


1998 ◽  
Vol 120 (4) ◽  
pp. 970-975 ◽  
Author(s):  
S. R. Ibrahim ◽  
J. C. Asmussen ◽  
R. Brincker

Using the Random Decrement (RD) technique to obtain free response estimates and combining this with time domain modal identification methods to obtain the poles and the mode shapes is acknowledged as a fast and accurate way of analysing measured responses of structures subject to ambient loads. When commonly accepted triggering conditions are used however, the user is restricted to use a combination of auto RD and cross RD functions with high noise contents on the cross RD functions. Use of the auto RD functions alone causes the loss of phase information and thus the possibility of estimating mode shapes. In this paper a new algorithm based on pure auto triggering is suggested. Equivalent auto RD functions are estimated for all channels to obtain functions with a minimum of noise, using a vector triggering condition that preserves phase information, and thus, allows for estimation of both poles and mode shapes. The proposed technique (VRD) is compared with the traditional RD technique by evaluating modal parameters extracted from the RD and the VRD functions using ITD identification technique on simulated and experimentally obtained data.


2014 ◽  
Vol 610 ◽  
pp. 332-338
Author(s):  
Lian Ying Zou ◽  
Ying Zhou ◽  
Xiang Dong ◽  
Yu Chen

Using multi-template processing algorithm, the fingerprint features are accurately collected. Through normalization, make the black and white point contrast of the fingerprint image more obviously, strengthen the ridge line texture. Direction calculating algorithm is based on the grey value of the neighborhood pixels. It can be implemented simply and speedily. Through direction filter, noises can be removed, and the contrast of the fingerprint’s ridge lines and valley lines can be enhanced. After binary converting, all information of the fingerprint is stored with 0 and 1. The effect of thinning is to make the fingerprint image more distinct to extract the fingerprint feature point easily. These steps had been implemented on Altera DE2 board with HDL codes. The experimental results indicate that the multi-template algorithm of fingerprint image processing is correct and practicable.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Martin Drahansky ◽  
Michal Dolezel ◽  
Jaroslav Urbanek ◽  
Eva Brezinova ◽  
Tai-hoon Kim

There are many people who suffer from some of the skin diseases. These diseases have a strong influence on the process of fingerprint recognition. People with fingerprint diseases are unable to use fingerprint scanners, which is discriminating for them, since they are not allowed to use their fingerprints for the authentication purposes. First in this paper the various diseases, which might influence functionality of the fingerprint-based systems, are introduced, mainly from the medical point of view. This overview is followed by some examples of diseased finger fingerprints, acquired both from dactyloscopic card and electronic sensors. At the end of this paper the proposed fingerprint image enhancement algorithm is described.


2014 ◽  
Vol 519-520 ◽  
pp. 577-580
Author(s):  
Shuai Yuan ◽  
Guo Yun Zhang ◽  
Jian Hui Wu ◽  
Long Yuan Guo

Fingerprint image feature extraction is a critical step to fingerprint recognition system, which studies topological structure, mathematical model and extraction algorithm of fingerprint feature. This paper presents system design and realization of feature extraction algorithm for fingerprint image. On the basis of fingerprint skeleton image, feature points including ending points, bifurcation points and singular points are extracted at first. Then false feature points are detected and eliminated by the violent changes of ambient orientation field. True feature points are marked at last. Test result shows that the method presented has good accuracy, quick speed and strong robustness for realtime application.


Sign in / Sign up

Export Citation Format

Share Document