Data Ownership and Secure Medical Data Transmission using Optimal Multiple Key-Based Homomorphic Encryption with Hyperledger Blockchain

Author(s):  
Naresh Sammeta ◽  
Latha Parthiban

Recent healthcare systems are defined as highly complex and expensive. But it can be decreased with enhanced electronic health records (EHR) management, using blockchain technology. The healthcare sector in today’s world needs to address two major issues, namely data ownership and data security. Therefore, blockchain technology is employed to access and distribute the EHRs. With this motivation, this paper presents novel data ownership and secure medical data transmission model using optimal multiple key-based homomorphic encryption (MHE) with Hyperledger blockchain (OMHE-HBC). The presented OMHE-HBC model enables the patients to access their own data, provide permission to hospital authorities, revoke permission from hospital authorities, and permit emergency contacts. The proposed model involves the MHE technique to securely transmit the data to the cloud and prevent unauthorized access to it. Besides, the optimal key generation process in the MHE technique takes place using a hosted cuckoo optimization (HCO) algorithm. In addition, the proposed model enables sharing of EHRs by the use of multi-channel HBC, which makes use of one blockchain to save patient visits and another one for the medical institutions in recoding links that point to EHRs stored in external systems. A complete set of experiments were carried out in order to validate the performance of the suggested model, and the results were analyzed under many aspects. A comprehensive comparison of results analysis reveals that the suggested model outperforms the other techniques.

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 20596-20608 ◽  
Author(s):  
Mohamed Elhoseny ◽  
Gustavo Ramirez-Gonzalez ◽  
Osama M. Abu-Elnasr ◽  
Shihab A. Shawkat ◽  
N. Arunkumar ◽  
...  

2014 ◽  
Vol 06 (04) ◽  
pp. 1450059 ◽  
Author(s):  
Naveed Ahmed Azam ◽  
Tariq Shah ◽  
Antonio Aparecido de Andrade

The frequency spectrums are inefficiently utilized and cognitive radio has been proposed for full utilization of these spectrums. The central idea of cognitive radio is to allow the secondary user to use the spectrum concurrently with the primary user with the compulsion of minimum interference. However, designing a model with minimum interference is a challenging task. In this paper, a transmission model based on cyclic generalized polynomial codes discussed in [2] and [15], is proposed for the improvement in utilization of spectrum. The proposed model assures a non interference data transmission of the primary and secondary users. Furthermore, analytical results are presented to show that the proposed model utilizes spectrum more efficiently as compared to traditional models.


The purpose of this paper is to explore the applications of blockchain in the healthcare industry. Healthcare sector can become an application domain of blockchain as it can be used to securely store health records and maintain an immutable version of truth. Blockchain technology is originally built on Hyperledger, which is a decentralized platform to enable secure, unambiguous and swift transactions and usage of medical records for various purposes. The paper proposes to use blockchain technology to provide a common and secured platform through which medical data can be accessed by doctors, medical practitioners, pharma and insurance companies. In order to provide secured access to such sensitive data, blockchain ensures that any organization or person can only access data with consent of the patient. The Hyperledger Fabric architecture guarantees that the data is safe and private by permitting the patients to grant multi-level access to their data. Apart from blockchain technology, machine learning can be used in the healthcare sector to understand and analyze patterns and gain insights from data. As blockchain can be used to provide secured and authenticated data, machine learning can be used to analyze the provided data and establish new boundaries by applying various machine learning techniques on such real-time medical data.


2019 ◽  
pp. 1528-1547
Author(s):  
Mbarek Marwan ◽  
Ali Kartit ◽  
Hassan Ouahmane

Healthcare sector is under pressure to reduce costs while delivering high quality of care services. This situation requires that clinical staff, equipment and IT tools to be used more equitably, judiciously and efficiently. In this sense, collaborative systems have the ability to provide opportunities for healthcare organizations to share resources and create a collaborative working environment. The lack of interoperability between dissimilar systems and operating costs are the major obstacle to the implementation of this concept. Fortunately, cloud computing has great potential for addressing interoperability issues and significantly reducing operating costs. Since the laws and regulations prohibit the disclosure of health information, it is necessary to carry out a comprehensive study on security and privacy issues in cloud computing. Based on their analysis of these constraints, the authors propose a simple and efficient method that enables secure collaboration between healthcare institutions. For this reason, they propose Secure Multi-party Computation (SMC) protocols to ensure compliance with data protection legislation. Specifically, the authors use Paillier scheme to protect medical data against unauthorized usage when outsourcing computations to a public cloud. Another useful feature of this algorithm is the possibility to perform arithmetic operations over encrypted data without access to the original data. In fact, the Paillier algorithm is an efficient homomorphic encryption that supports addition operations on ciphertexts. Based on the simulation results, the proposed framework helps healthcare organizations to successfully evaluate a public function directly on encrypted data without revealing their private inputs. Consequently, the proposed collaborative application ensures privacy of medical data while completing a task.


2018 ◽  
Vol 14 (3) ◽  
pp. 128-145 ◽  
Author(s):  
Mbarek Marwan ◽  
Ali Kartit ◽  
Hassan Ouahmane

Healthcare sector is under pressure to reduce costs while delivering high quality of care services. This situation requires that clinical staff, equipment and IT tools to be used more equitably, judiciously and efficiently. In this sense, collaborative systems have the ability to provide opportunities for healthcare organizations to share resources and create a collaborative working environment. The lack of interoperability between dissimilar systems and operating costs are the major obstacle to the implementation of this concept. Fortunately, cloud computing has great potential for addressing interoperability issues and significantly reducing operating costs. Since the laws and regulations prohibit the disclosure of health information, it is necessary to carry out a comprehensive study on security and privacy issues in cloud computing. Based on their analysis of these constraints, the authors propose a simple and efficient method that enables secure collaboration between healthcare institutions. For this reason, they propose Secure Multi-party Computation (SMC) protocols to ensure compliance with data protection legislation. Specifically, the authors use Paillier scheme to protect medical data against unauthorized usage when outsourcing computations to a public cloud. Another useful feature of this algorithm is the possibility to perform arithmetic operations over encrypted data without access to the original data. In fact, the Paillier algorithm is an efficient homomorphic encryption that supports addition operations on ciphertexts. Based on the simulation results, the proposed framework helps healthcare organizations to successfully evaluate a public function directly on encrypted data without revealing their private inputs. Consequently, the proposed collaborative application ensures privacy of medical data while completing a task.


2019 ◽  
Vol 4 (2019) ◽  
pp. 55-64
Author(s):  
Ajaykumar Notom ◽  
Sarvagya Mrinal ◽  
Prandkar Parag

In this paper a highly robust and efficient systematic-random linear network coding (S-RLNC) routing scheme is proposed. Unlike classic security systems, the proposed S-RLNC transmission model incorporates an advanced pre-coding and interleaving concept followed by multigeneration mixing (MGM) based data transmission to assure secure and QoS efficient communication. The proposed S-RLNC MGM based routing scheme exhibits higher throughput (99.5-100%) than the existing NCC-ARQ-WSN protocol (80%). Unlike NCC-ARQ-WSN, the proposed model incorporates multiple enhancements, such as RLNC concept, systematic network coding, MGM concept, IBF provision and redundant packet optimization. Combined, all these optimizations have strengthened the proposed S-RLNC MGM to exhibit optimum performance for secure and QoS-centric communication over WSNs.


Author(s):  
Я.О. Ключка ◽  
О.В. Шматко ◽  
С.П. Євсеєв ◽  
С.В. Милевський

The current situation in the field of health care is considered and the key problems faced by this industry are described. Today, there are two main issues to be addressed in healthcare: data ownership and data security. The patient's medical data is preferably stored in centralized, isolated systems that are incompatible with each other. This situation creates difficulties in terms of timely exchange of medical data and access to them. The lack of data complicates further diagnosis and treatment of the patient. In addition, systems that store medical data are not completely reliable. Third parties can easily access and modify medical data. It is expected that blockchain technology can solve the problems that currently exist in the field of health care. Blockchain technology will create distributed, decentralized systems that will significantly improve the quality of care provided. The paper considers the areas in the field of health care, in which blockchain technology is beginning to develop, as well as related projects. All considered projects can be divided into four areas: supply chain surveillance and fight against counterfeit products, telemedicine, diagnostics, storage and management of medical data. The healthcare sector is developing rapidly and new areas are expected in which the blockchain will be used. Although there are still some problems that need to be overcome for the blockchain to be fully used.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huijie Yang ◽  
Jian Shen ◽  
Junqing Lu ◽  
Tianqi Zhou ◽  
Xueya Xia ◽  
...  

With the development of the Internet of Things and the demand for telemedicine, the smart healthcare system has attracted much attention in recent years. As a platform for medical data interaction, the smart healthcare system is demanded to ensure the privacy of both the receiver and the sender, as well as the security of data transmission. In this paper, we propose a privacy-preserving data transmission scheme where both secure ciphertext conversion and malicious users identification are supported. In particular, the OT m n protocol is introduced to guarantee the two-way privacy of communication parties. Meanwhile, we adopt proxy reencryption algorithm to support secure ciphertext conversion so as to ensure the confidentiality of data in many-to-many communication pattern. In addition, by taking advantage of the concept of blockchain technology, a novel OT m n protocol is proposed to prevent data from being tampered with and effectively identify malicious users. Theoretical and experimental analyses indicate that the proposed scheme is practical for smart healthcare with high security and efficiency.


Sign in / Sign up

Export Citation Format

Share Document