SURFACE LEAKAGE CURRENT RELATED $\frac{1}{f}$ NOISE IN NONILLUMINATED FOCAL PLANE ARRAY Hg1-xCdxTe DIODE

2003 ◽  
Vol 03 (04) ◽  
pp. L379-L388 ◽  
Author(s):  
J. P. PEREZ ◽  
P. SIGNORET ◽  
M. MYARA ◽  
I. ASAAD ◽  
B. ORSAL

Experimental results are presented for current-voltage and dynamic resistance-voltage characteristics of Hg1-xCdxTe ion implanted n+-on-p junction photodiodes with x = 0,3. By measuring the temperature dependence of the dc characteristics in the temperature range [77 K, 175 K], it was found that the dark current can be represented with two components at low reverse-bias: diffusion and surface leakage current. Furthermore, reporting on electrical noise spectral density as a function of temperature and dark current, we assume that below 120 K, [Formula: see text] noise current is surface leakage current related.

2011 ◽  
Vol 20 (03) ◽  
pp. 557-564
Author(s):  
G. R. SAVICH ◽  
J. R. PEDRAZZANI ◽  
S. MAIMON ◽  
G. W. WICKS

Tunneling currents and surface leakage currents are both contributors to the overall dark current which limits many semiconductor devices. Surface leakage current is generally controlled by applying a post-epitaxial passivation layer; however, surface passivation is often expensive and ineffective. Band-to-band and trap assisted tunneling currents cannot be controlled through surface passivants, thus an alternative means of control is necessary. Unipolar barriers, when appropriately applied to standard electronic device structures, can reduce the effects of both surface leakage and tunneling currents more easily and cost effectively than other methods, including surface passivation. Unipolar barriers are applied to the p -type region of a conventional, MBE grown, InAs based pn junction structures resulting in a reduction of surface leakage current. Placing the unipolar barrier in the n -type region of the device, has the added benefit of reducing trap assisted tunneling current as well as surface leakage currents. Conventional, InAs pn junctions are shown to exhibit surface leakage current while unipolar barrier photodiodes show no detectable surface currents.


Author(s):  
A.V. Voitsekhovskii ◽  
◽  
S.N. Nesmelov ◽  
S.M. Dzyadukh ◽  
S.A. Dvoretsky ◽  
...  

Two types of long-wave infrared nBn structures based on mercury cadmium telluride grown by molecular beam epitaxy on GaAs (013) substrates have been fabricated. For each type of device, the side walls of the mesa structures were passivated with an Al2O3 dielectric film or left without passivation. The CdTe content in the absorbing layers was 0.20 and 0.21, and in the barrier layers, 0.61 and 0.63. The dark currents of the manufactured devices were studied in a wide range of voltages and temperatures. The values of the surface leakage component are found under various conditions. It has been shown that the surface leakage current density decreases upon passivation with an Al2O3 film. It was found that at room temperature in the fabricated nBn structures with reverse biases, the surface leakage component dominates, and with forward biases, the dark current is determined by the combined effect of the surface leakage component and the bulk current component. From the Arrhenius plots, the values of the activation energies of the surface leakage current component were found, which at small reverse biases are in the range from 0.05 to 0.10 eV. At small reverse biases, upon cooling the samples, the role of the bulk component of the dark current increases, which at 180 K is approximately 0.81 A/cm2. In the temperature range 200-300 K, the values of the dark current density exceed the values calculated according to the empirical Rule07 model by a factor of 10-100, which indicates the possibility of creating long-wave infrared barrier detectors with a decrease in the values of the surface leakage component.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 508 ◽  
Author(s):  
Stanislav Tiagulskyi ◽  
Roman Yatskiv ◽  
Hana Faitová ◽  
Šárka Kučerová ◽  
David Roesel ◽  
...  

We study the effect of thermal annealing on the electrical properties of the nanoscale p-n heterojunctions based on single n-type ZnO nanorods on p-type GaN substrates. The ZnO nanorods are prepared by chemical bath deposition on both plain GaN substrates and on the substrates locally patterned by focused ion beam lithography. Electrical properties of single nanorod heterojunctions are measured with a nanoprobe in the vacuum chamber of a scanning electron microscope. The focused ion beam lithography provides a uniform nucleation of ZnO, which results in a uniform growth of ZnO nanorods. The specific configuration of the interface between the ZnO nanorods and GaN substrate created by the focused ion beam suppresses the surface leakage current and improves the current-voltage characteristics. Further improvement of the electrical characteristics is achieved by annealing of the structures in nitrogen, which limits the defect-mediated leakage current and increases the carrier injection efficiency.


2002 ◽  
Vol 229 (1) ◽  
pp. 79-82
Author(s):  
Y.J. Choi ◽  
K.N. Oh ◽  
I.J. Kim ◽  
Y.H. Kim ◽  
Y. Yi ◽  
...  

2014 ◽  
Vol 104 (15) ◽  
pp. 153509 ◽  
Author(s):  
YongHe Chen ◽  
Kai Zhang ◽  
MengYi Cao ◽  
ShengLei Zhao ◽  
JinCheng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document