ESTIMATING MUSCLE FORCES AND KNEE JOINT TORQUE USING SURFACE ELECTROMYOGRAPHY: A MUSCULOSKELETAL BIOMECHANICAL MODEL

2017 ◽  
Vol 17 (04) ◽  
pp. 1750069 ◽  
Author(s):  
JIANGCHENG CHEN ◽  
XIAODONG ZHANG ◽  
LINXIA GU ◽  
CARL NELSON

Surface electromyography (sEMG) is a useful tool for revealing the underlying musculoskeletal dynamic properties in the human body movement. In this paper, a musculoskeletal biomechanical model which relates the sEMG and knee joint torque is proposed. First, the dynamic model relating sEMG to skeletal muscle activation considering frequency and amplitude is built. Second, a muscle contraction model based on sliding-filament theory is developed to reflect the physiological structure and micro mechanical properties of the muscle. The muscle force and displacement vectors are determined and the transformation from muscle force to knee joint moment is realized, and finally a genetic algorithm-based calibration method for the Newton–Euler dynamics and overall musculoskeletal biomechanical model is put forward. Following the model calibration, the flexion/extension (FE) knee joint torque of eight subjects under different walking speeds was predicted. Results show that the forward biomechanical model can capture the general shape and timing of the joint torque, with normalized mean residual error (NMRE) of [Formula: see text]10.01%, normalized root mean square error (NRMSE) of [Formula: see text]12.39% and cross-correlation coefficient of [Formula: see text]0.926. The musculoskeletal biomechanical model proposed and validated in this work could facilitate the study of neural control and how muscle forces generate and contribute to the knee joint torque during human movement.

2005 ◽  
Vol 94 (5) ◽  
pp. 3046-3057 ◽  
Author(s):  
Jonathan Shemmell ◽  
Matthew Forner ◽  
James R. Tresilian ◽  
Stephan Riek ◽  
Benjamin K. Barry ◽  
...  

In this study we attempted to identify the principles that govern the changes in neural control that occur during repeated performance of a multiarticular coordination task. Eight participants produced isometric flexion/extension and pronation/supination torques at the radiohumeral joint, either in isolation (e.g., flexion) or in combination (e.g., flexion–supination), to acquire targets presented by a visual display. A cursor superimposed on the display provided feedback of the applied torques. During pre- and postpractice tests, the participants acquired targets in eight directions located either 3.6 cm (20% maximal voluntary contraction [MVC]) or 7.2 cm (40% MVC) from a neutral cursor position. On each of five consecutive days of practice the participants acquired targets located 5.4 cm (30% MVC) from the neutral position. EMG was recorded from eight muscles contributing to torque production about the radiohumeral joint during the pre- and posttests. Target-acquisition time decreased significantly with practice in most target directions and at both target torque levels. These performance improvements were primarily associated with increases in the peak rate of torque development after practice. At a muscular level, these changes were brought about by increases in the rates of recruitment of all agonist muscles. The spatiotemporal organization of muscle synergies was not significantly altered after practice. The observed adaptations appear to lead to performances that are generalizable to actions that require both greater and smaller joint torques than that practiced, and may be successfully recalled after a substantial period without practice. These results suggest that tasks in which performance is improved by increasing the rate of muscle activation, and thus the rate of joint torque development, may benefit in terms of the extent to which acquired levels of performance are maintained over time.


2021 ◽  
Vol 11 (5) ◽  
pp. 2356
Author(s):  
Carlo Albino Frigo ◽  
Lucia Donno

A musculoskeletal model was developed to analyze the tensions of the knee joint ligaments during walking and to understand how they change with changes in the muscle forces. The model included the femur, tibia, patella and all components of cruciate and collateral ligaments, quadriceps, hamstrings and gastrocnemius muscles. Inputs to the model were the muscle forces, estimated by a static optimization approach, the external loads (ground reaction forces and moments) and the knee flexion/extension movement corresponding to natural walking. The remaining rotational and translational movements were obtained as a result of the dynamic equilibrium of forces. The validation of the model was done by comparing our results with literature data. Several simulations were carried out by sequentially removing the forces of the different muscle groups. Deactivation of the quadriceps produced a decrease of tension in the anterior cruciate ligament (ACL) and an increase in the posterior cruciate ligament (PCL). By removing the hamstrings, the tension of ACL increased at the late swing phase, while the PCL force dropped to zero. Specific effects were observed also at the medial and lateral collateral ligaments. The removal of gastrocnemius muscles produced an increase of tension only on PCL and lateral collateral ligaments. These results demonstrate how musculoskeletal models can contribute to knowledge about complex biomechanical systems as the knee joint.


2005 ◽  
Vol 05 (04) ◽  
pp. 539-548 ◽  
Author(s):  
SANTANU MAJUMDER ◽  
AMIT ROYCHOWDHURY ◽  
SUBRATA PAL

With the help of finite element (FE) computational models of femur, pelvis or hip joint to perform quasi-static stress analysis during the entire gait cycle, muscle force components (X, Y, Z) acting on the hip joint and pelvis are to be known. Most of the investigators have presented only the net muscle force magnitude during gait. However, for the FE software, either muscle force components (X, Y, Z) or three angles for the muscle line of action are required as input. No published algorithm (with flowchart) is readily available to calculate the required muscle force components for FE analysis. As the femur rotates about the hip center during gait, the lines of action for 27 muscle forces are also variable. To find out the variable lines of action and muscle force components (X, Y, Z) with directions, an algorithm was developed and presented here with detailed flowchart. We considered the varying angles of adduction/abduction, flexion/extension during gait. This computer program, obtainable from the first author, is able to calculate the muscle force components (X, Y, Z) as output, if the net magnitude of muscle force, hip joint orientations during gait and muscle origin and insertion coordinates are provided as input.


2019 ◽  
Author(s):  
Andrea Zonnino ◽  
Daniel R. Smith ◽  
Peyton L. Delgorio ◽  
Curtis L. Johnson ◽  
Fabrizio Sergi

AbstractNon-invasive in-vivo measurement of individual muscle force is limited by the infeasibility of placing force sensing elements in series with the musculo-tendon structures. At the same time, estimating muscle forces using EMG measurements is prone to inaccuracies, as EMG is not always measurable for the complete set of muscles acting around the joints of interest. While new methods based on shear wave elastography have been recently proposed to directly characterize muscle mechanics, they can only be used to measure muscle forces in a limited set of superficial muscles. As such, they are not suitable to study the neuromuscular control of movements that require coordinated action of multiple muscles.In this work, we present multi-muscle magnetic resonance elastography (MM-MRE), a new technique capable of quantifying individual muscle force from the complete set of muscles in the forearm, thus enabling the study of the neuromuscular control of wrist movements. MM-MRE integrates measurements of joint torque provided by an MRI-compatible instrumented handle with muscle-specific measurements of shear wave speed obtained via MRE to quantify individual muscle force using model-based estimator.A single-subject pilot experiment demonstrates the possibility of obtaining measurements from individual muscles and establishes that MM-MRE has sufficient sensitivity to detect changes in muscle mechanics following the application of isometric joint torque with self-selected intensity.


Author(s):  
Daniel N. Bassett ◽  
Joseph D. Gardinier ◽  
Kurt T. Manal ◽  
Thomas S. Buchanan

This chapter describes a biomechanical model of the forces about the ankle joint applicable to both unimpaired and neurologically impaired subjects. EMGs and joint kinematics are used as inputs and muscle forces are the outputs. A hybrid modeling approach that uses both forward and inverse dynamics is employed and physiological parameters for the model are tuned for each subject using optimization procedures. The forward dynamics part of the model takes muscle activation and uses Hill-type models of muscle contraction dynamics to estimate muscle forces and the corresponding joint moments. Inverse dynamics is used to calibrate the forward dynamics model predictions of joint moments. In this chapter we will describe how to implement an EMG-driven hybrid forward and inverse dynamics model of the ankle that can be used in healthy and neurologically impaired people.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 69
Author(s):  
Taisei Mori ◽  
Yohei Ogino ◽  
Akihiro Matsuda ◽  
Yumiko Funabashi

In this paper, 3-axial knee joint torques given by compression sports tights were performed by numerical simulations using 3-dimensional computer graphics of a human model. Running motions of the human model were represented as the 3-dimensional computer graphics, and the running motions were determined by the motion capturing system of human subjects. Strain distribution on the surface of the 3-dimentional computer graphics of the human model was applied to the boundary conditions of the numerical simulations. An anisotropic hyperelastic model considering stress softening of fabric materials was implemented to reproduce the mechanical characteristics of the compression sports tights. Based on the strain-time relationships, knee joint torques in 3-dimentional coordinates given by the compression sports tights were calculated. As a result, the three types of knee joint torque generated by the compression sports tights in running motions were calculated. From the calculated results, the maximum value of flexion/extension, varus/valgus, and internal/external knee joint torques were given as 2.52, 0.59, and 0.31 Nm, respectively. The effect of compression sports tights on the knee joint was investigated.


1978 ◽  
Vol 100 (2) ◽  
pp. 72-78 ◽  
Author(s):  
D. E. Hardt

The individual muscle forces in the leg during human walking are unknown, because of a greater number of muscles when compared to degrees of freedom at the joints. The muscle force-joint torque equations can be solved, however, using optimization techniques. A linear programming solution of these equations applied at discrete, time-independent steps in the walking cycle using dynamic joint torque data is presented. The use of this technique, although capable of providing unique solutions, gives questionable muscle force histories when compared to electromyographic data. The reasons for the lack of confidence in the solution are found in the inherent limitations imposed by the linear programming algorithm and in the simplistic treatment of the muscles as tensile force sources rather than complex mechanochemical transducers. The definition of a physiologically rationalized optimal criterion requires both a global optimization approach and more complete modelling of the system.


Author(s):  
Mohamed Amine Alouane ◽  
Hala Rifai ◽  
Kwangtaek Kim ◽  
Yacine Amirat ◽  
Samer Mohammed

Purpose This paper aims to deal with the design of new hybrid approach for the assistance of the flexion extension movement of the knee joint. Design/methodology/approach The control approach combines the use of a knee joint orthosis along with functional electrical stimulation (FES) within an assist-as-needed paradigm. An active impedance controller is used to assist the generation of muscular stimulation patterns during the extension sub-phase of the knee joint movement. The generated FES patterns are appropriately tailored to achieve flexion/extension movement of the knee joint, which allows providing the required assistance by the subject through muscular stimulation. The generated torque through stimulation is tracked by a non-linear disturbance observer and fed to the impedance controller to generate the desired trajectory that will be tracked using a standard proportional derivative controller. Findings The approach was tested in experiments with two healthy subjects. Results show satisfactory performances in terms of estimating the knee joint torque, as well as in terms of cooperation between the FES and the orthosis actuator during the execution of the knee joint flexion/extension movements. Originality/value The authors designed a new hybrid approach for the assistance of the flexion extension movement of the knee joint, which has not been studied yet. The control approach combines the use of a knee joint orthosis along with FES within an assist-as-needed paradigm.


Sign in / Sign up

Export Citation Format

Share Document