scholarly journals MEASUREMENT AND FINITE ELEMENT ANALYSIS OF THE LOAD-DEPENDENT PRESSURE REDISTRIBUTION BEHAVIOR OF VARIOUS TYPES OF MATTRESSES

2020 ◽  
Vol 20 (05) ◽  
pp. 2050031
Author(s):  
YASUHIRO FUWA ◽  
WAN ZUHA WAN HASAN ◽  
HIROSHI YAMADA

Load dependence must be kept in mind when evaluating mattress pressure redistribution, to prevent the development of pressure ulcers at bony prominences. However, there is no standardized method for analyzing load-dependent behavior after mattress pressure redistribution. In this study, a portable palmtop device with a simple load-sensing mechanism was developed for measuring the mean pressure exerted by a protruding shaft surrounded by a disc on low-resilience polyurethane (LRPu) foam, latex foam, coconut fiber and latex (CFL) mattresses, as well as polyurethane (Pu) foam bed and an LRPu foam mattress laid on a bed. Finite element (FE) analysis was used to analyze deformation and contact pressure in detail. The pressure redistribution was greatest for the LRPu foam mattress, and excessive compression was avoided by using an underlay made of stiff Pu foam. FE analysis revealed that the contact pressure increased significantly near the outer circumference of the protruding shaft and the surrounding disc. Significant nonuniformity in pressure was evident, according to the edge and bottom geometry of the device. The measurements and FE analysis revealed load-dependent pressure redistribution behavior, which should allow mattresses to be tailored on an individual basis.

1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


Author(s):  
N. Shimizu ◽  
H. Nasuno ◽  
T. Yazaki ◽  
K. Sunakoda

This paper describes a methodology of design and analysis of viscoelastic seismic dampers by means of the time domain finite element analysis. The viscoelastic constitutive relation of material incorporating with the fractional calculus has been derived and the finite element formulation based on the constitutive relation has been developed to analyze the dynamic property of seismic damper. A time domain computer program was developed by using the formulation. Dynamic properties of hysteresis loop, damping capacity, equivalent viscous damping coefficient, and equivalent spring constant are calculated and compared with the experimental results. Remarkable correlation between the FE analysis and the experiment is gained, and consequently the design procedure with the help of the FE analysis has been established.


2013 ◽  
Vol 856 ◽  
pp. 147-152
Author(s):  
S.H. Adarsh ◽  
U.S. Mallikarjun

Shape Memory Alloys (SMA) are promising materials for actuation in space applications, because of the relatively large deformations and forces that they offer. However, their complex behaviour and interaction of several physical domains (electrical, thermal and mechanical), the study of SMA behaviour is a challenging field. Present work aims at correlating the Finite Element (FE) analysis of SMA with closed form solutions and experimental data. Though sufficient literature is available on closed form solution of SMA, not much detail is available on the Finite element Analysis. In the present work an attempt is made for characterization of SMA through solving the governing equations by established closed form solution, and finally correlating FE results with these data. Extensive experiments were conducted on 0.3mm diameter NiTinol SMA wire at various temperatures and stress conditions and these results were compared with FE analysis conducted using MSC.Marc. A comparison of results from finite element analysis with the experimental data exhibits fairly good agreement.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Kenji Kitamura ◽  
Masanori Fujii ◽  
Miho Iwamoto ◽  
Satoshi Ikemura ◽  
Satoshi Hamai ◽  
...  

Abstract Background The ideal acetabular position for optimizing hip joint biomechanics in periacetabular osteotomy (PAO) remains unclear. We aimed to determine the relationship between acetabular correction in the coronal plane and joint contact pressure (CP) and identify morphological factors associated with residual abnormal CP after correction. Methods Using CT images from 44 patients with hip dysplasia, we performed three patterns of virtual PAOs on patient-specific 3D hip models; the acetabulum was rotated laterally to the lateral center-edge angles (LCEA) of 30°, 35°, and 40°. Finite-element analysis was used to calculate the CP of the acetabular cartilage during a single-leg stance. Results Coronal correction to the LCEA of 30° decreased the median maximum CP 0.5-fold compared to preoperatively (p <  0.001). Additional correction to the LCEA of 40° further decreased CP in 15 hips (34%) but conversely increased CP in 29 hips (66%). The increase in CP was associated with greater preoperative extrusion index (p = 0.030) and roundness index (p = 0.038). Overall, virtual PAO failed to normalize CP in 11 hips (25%), and a small anterior wall index (p = 0.049) and a large roundness index (p = 0.003) were associated with residual abnormal CP. Conclusions The degree of acetabular correction in the coronal plane where CP is minimized varied among patients. Coronal plane correction alone failed to normalize CP in 25% of patients in this study. In patients with an anterior acetabular deficiency (anterior wall index < 0.21) and an aspherical femoral head (roundness index > 53.2%), coronal plane correction alone may not normalize CP. Further studies are needed to clarify the effectiveness of multiplanar correction, including in the sagittal and axial planes, in optimizing the hip joint’s contact mechanics.


2019 ◽  
Vol 11 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Benedict Jain A.R. Tony ◽  
Masilamany S. Alphin

SummaryStudy aim: Interactions between the fingers and a handle can be analyzed using a finite element finger model. Hence, the biomechanical response of a hybrid human finger model during contact with varying diameter cylindrical handles was investigated numerically in the present study using ABAQUS/CAE.Materials and methods: The finite element index finger model consists of three segments: the proximal, middle, and distal phalanges. The finger model comprises skin, bone, subcutaneous tissue and nail. The skin and subcutaneous tissues were assumed to be non-linearly elastic and linearly visco-elastic. The FE model was applied to predict the contact interaction between the fingers and a handle with 10 N, 20 N, 40 N and 50 N grip forces for four different diameter handles (30 mm, 40 mm, 44mm and 50 mm). The model predictions projected the biomechanical response of the finger during the static gripping analysis with 200 incremental steps.Results: The simulation results showed that the increase in contact area reduced the maximal compressive stress/strain and also the contact pressure on finger skin. It was hypothesized in this study that the diameter of the handle influences the stress/strain and contact pressure within the soft tissue during the contact interactions.Conclusions: The present study may be useful to study the behavior of the finger model under the static gripping of hand-held power tools.


1989 ◽  
Vol 111 (3) ◽  
pp. 430-439 ◽  
Author(s):  
K. Komvopoulos

The elastic-plastic contact problem of a layered half-space indented by a rigid surface is solved with the finite element method. The case of a layer stiffer and harder than the substrate is analyzed and solutions for the contact pressure, subsurface stresses and strains, and location, shape, and growth of the plastic zone are presented for various layer thicknesses and indentation depths. Finite element results for a halfspace having the substrate properties are also given for comparison purposes. Differences between the elastic and elastic-plastic solutions are discussed and the significance of critical parameters such as the layer thickness, mechanical properties of layer and substrate materials, indentation depth, and interfacial friction on the threshold of plasticity, contact pressure distribution, and growth of the plastic zone are examined. Additionally, the mechanisms of layer decohesion and subsurface crack initiation are interpreted in light of the results obtained in this study.


Author(s):  
Chris Alexander ◽  
Wade Armer ◽  
Stuart Harbert

KOCH Heat Transfer Company contracted Stress Engineering Services, Inc. to perform a design/parameter study of a return bonnet used in hairpin heat exchangers that employs an elliptical flange design. The return bonnet is an important component of the heat exchanger as it can be removed to permit inspection of the heat exchanger tubes. The return bonnet is bolted to the hairpin leg flange. To maintain sealing integrity a gasket is placed between the return bonnet flange and the hairpin leg flange. The sealing efficiency of two return bonnet sizes (24-inch and 30-inch) was investigated in this study using finite element analysis. The sealing efficiency is an indication of how the contact pressure changes circumferentially around the gasket and is calculated by dividing the local contact pressure by the maximum contact pressure calculated in the gasket for each respective design. The study assessed the effects of geometric changes to the mating flanges. Using an iterative design process using finite element analysis, the elliptical flanges were optimized to maximize sealing efficiency. Upon completion of the study, the manufacturer successfully employed the modifications as evidenced with multiple successful hydrotests.


Sign in / Sign up

Export Citation Format

Share Document