NANOSTRUCTURED SnO2/C COMPOSITE ANODES IN LITHIUM-ION BATTERIES

2003 ◽  
Vol 02 (04n05) ◽  
pp. 299-306 ◽  
Author(s):  
CHIEN-TE HSIEH ◽  
JIN-MING CHEN ◽  
HSIU-WEN HUANG

Nanostructured SnO 2/ C composites used as anode materials were prepared by sol–gel synthesis to explore electrochemical properties in lithium-ion batteries. Surface characteristics of the SnO 2/ C nanocomposite were analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found that nanocrystalline SnO 2/ C with a grain size of 20–50 nm was uniformly dispersed on the carbon surface. After nanocrytalline SnO 2 coated onto carbon, the discharge capacity showed an increase up to 23%, i.e., from 300 to 370 mAh/g at a current density of 0.6 mA/cm2. The nanocomposite anode can achieve a fairly stable discharge capacity and excellent Coulombic efficiency (>99.5%) over 50 cycles. Cyclic voltammograms indicated that the improvements on capacity and cycleability were due to reversible alloying of nanosized Sn and Li on carbon surface.

Author(s):  
G. S. Zakharova ◽  
E. Thauer ◽  
A. N. Enyashin ◽  
L. F. Deeg ◽  
Q. Zhu ◽  
...  

AbstractThe potential battery electrode material V2O3/C has been prepared using a sol–gel thermolysis technique, employing vanadyl hydroxide as precursor and different organic acids as both chelating agents and carbon sources. Composition and morphology of resultant materials were characterized by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopies, physical sorption, and elemental analysis. Stability and electronic properties of model composites with chemically and physically integrated carbon were studied by means of quantum-chemical calculations. All fabricated composites are hierarchically structured and consist of carbon-covered microparticles assembled of polyhedral V2O3 nanograins with intrusions of amorphous carbon at the grain boundaries. Such V2O3/C phase separation is thermodynamically favored while formation of vanadium (oxy)carbides or heavily doped V2O3 is highly unlikely. When used as anode for lithium-ion batteries, the nanocomposite V2O3/C fabricated with citric acid exhibits superior electrochemical performance with an excellent cycle stability and a specific charge capacity of 335 mAh g−1 in cycle 95 at 100 mA g−1. We also find that the used carbon source has only minor effects on the materials’ electrochemical performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
He Wang ◽  
Mingning Chang ◽  
Yonglei Zheng ◽  
Ningning Li ◽  
Siheng Chen ◽  
...  

A lithium-rich manganese-based cathode material, Li1.25Ni0.2Co0.333Fe0.133Mn0.333O2, was prepared using a polyvinyl alcohol (PVA)-auxiliary sol-gel process using MnO2 as a template. The effect of the PVA content (0.0–15.0 wt%) on the electrochemical properties and morphology of Li1.25Ni0.2Co0.333Fe0.133Mn0.333O2 was investigated. Analysis of Li1.25Ni0.2Co0.333Fe0.133Mn0.333O2 X-ray diffraction patterns by RIETAN-FP program confirmed the layered α-NaFeO2 structure. The discharge capacity and coulombic efficiency of Li1.25Ni0.2Co0.333Fe0.133Mn0.333O2 in the first cycle were improved with increasing PVA content. In particular, the best material reached a first discharge capacity of 206.0 mAhg−1 and best rate capability (74.8 mAhg−1 at 5 C). Meanwhile, the highest capacity retention was 87.7% for 50 cycles. Finally, electrochemical impedance spectroscopy shows that as the PVA content increases, the charge-transfer resistance decreases.


2020 ◽  
Vol 835 ◽  
pp. 155135 ◽  
Author(s):  
Wei Zhang ◽  
Jianjiang Li ◽  
Peng Guan ◽  
Chunxiao Lv ◽  
Chao Yang ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (64) ◽  
pp. 51483-51488 ◽  
Author(s):  
Sen Gao ◽  
Wei Wei ◽  
Maixia Ma ◽  
Juanjuan Qi ◽  
Jie Yang ◽  
...  

This paper expounds upon the relationship between the electrochemical performance and the degree of c-axis orientation of LiCoO2.


2010 ◽  
Vol 195 (19) ◽  
pp. 6854-6859 ◽  
Author(s):  
Jianqing Zhao ◽  
Jianping He ◽  
Xiaochun Ding ◽  
Jianhua Zhou ◽  
Yi’ou Ma ◽  
...  

2014 ◽  
Vol 129 ◽  
pp. 410-415 ◽  
Author(s):  
Jinxue Guo ◽  
Lei Chen ◽  
Xiao Zhang ◽  
Bin Jiang ◽  
Linzheng Ma

2014 ◽  
Vol 1033-1034 ◽  
pp. 125-128
Author(s):  
Chun Yan Lai ◽  
Zhen Wang ◽  
Jia Jun Zhu ◽  
Qun Jie Xu

Ascorbic acid (VC) was used as carbon source for Li2MnSiO4/C composite synthesized by a sol-gel method. By comparing the electrochemical performance of the Li2MnSiO4/C composite and pure Li2MnSiO4, it was found that VC adding can improve the capacity of Li2MnSiO4. The Li2MnSiO4/C with 10% VC shows a discharge capacity of 212 mAh/g at 0.05C and Li2MnSiO4/C with 15% VC shows discharge capacity of 192 mAh/g at 0.1C, that were higher than the capacity of pure Li2MnSiO4.


Sign in / Sign up

Export Citation Format

Share Document