SYNTHESIS AND CHARACTERIZATION OF BIFUNCTIONAL CoFe2O4–ZnS NANOCOMPOSITE

2011 ◽  
Vol 10 (01n02) ◽  
pp. 237-240 ◽  
Author(s):  
J. P. BORAH ◽  
C. BORGOHAIN ◽  
K. C. SARMA ◽  
K. K. SENAPATI ◽  
P. PHUKAN

The synthesis of composite magnetic nanomaterials has received increasing attention due to their electronic, magnetic, catalytic, and chemical or biological sensing properties. We have prepared cobalt ferrite–zinc sulfide nanocomposites by a chemical route. The synthesized nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and photoluminescence spectrometer (PL). The fluorescent magnetic nanoparticles (FMNPs) had a typical diameter of 30±5 nm and saturation magnetization of 5.8 emu g-1 at room temperature. So, these FMNPs may be potentially applied in different fields such as optoelectronic devices, biolabeling, imaging, drug targeting, bioseparation, magnetic fluid hyperthermia, etc.

2011 ◽  
Vol 1322 ◽  
Author(s):  
Sandip Das ◽  
Krishna C. Mandal

ABSTRACTCdS host nanocrystals with 4.2-5.5 nm in diameter have been synthesized from air stable precursors via a synthetic chemical route and doped with rare earth (RE) terbium (Tb3+) and ytterbium (Yb3+) ions. RE3+-doped CdS cores were shelled by ZnS layers of different thicknesses. The resulting core/shell nanocrystals show a complete broadband absorption below 400-460 nm to the deep UV region depending on the size of the cores. RE3+-doped CdS nanocrystals showed a red shift in the emission as observed under irradiation of 302 nm UV light and was confirmed by room temperature photoluminescence (PL) measurements. The nanocrystals were further characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive x-ray (EDX) analysis. The results show that these RE3+-doped nanocrystals can be used as solar spectral matching downconversion material to enhance photovoltaic efficiency of existing solar cells.


2014 ◽  
Vol 602-603 ◽  
pp. 19-22 ◽  
Author(s):  
Lin Qiang Gao ◽  
Hai Yan Chen ◽  
Zhen Wang ◽  
Xin Zou

Nanoscale LiTaO3 powders with perovskite structure were synthesized using the solvothermal technique with glycol as solvent at 240°C for 12h. The powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD was used to elucidate room temperature structures using Rietveld refinement. The powders were pure single pervoskite phase with high crystallinity. FESEM and TEM were used to determine particle size and morphology. The average LiTaO3 grain size was estimated to be < 200nm, and TEM images indicated that LiTaO3 particles had a brick-like morphology. In addition, the effect of the temperature on the LiTaO3 power characterisitics was also detailed studied.


2010 ◽  
Vol 305-306 ◽  
pp. 33-37 ◽  
Author(s):  
S. Lallouche ◽  
M.Y. Debili

This work deals with Al-Cu thin films, deposited onto glass substrates by RF (13.56MHz) magnetron sputtering, and annealed at 773K. The film thickness was approximately the same 3-4µm. They are characterized with respect to microstructure, grain size, microstrain, dislocation density and resistivity versus copper content. Al (Cu) deposits containing 1.8, 7.21, 86.17 and 92.5at%Cu have been investigated. The use of X-ray diffraction analysis and transmission electron microscopy lead to the characterization of different structural features of films deposited at room temperature (< 400K) and after annealing (773K). The resistivity of the films was measured using the four-point probe method. The microstrain profile obtained from XRD thanks to the Williamson-Hall method shows an increase with increasing copper content.


2016 ◽  
Vol 42 ◽  
pp. 47-52
Author(s):  
Dan Dan Huang ◽  
Zhao Dai ◽  
Kun Yang ◽  
Yuan Yuan Chu

The fabrication of gold-loaded magnetite/silica core-shell particles was presented in this paper. First, 250 nm of magnetic Fe3O4 nanoparticles were prepared by solvothermal reaction. Then, the Fe3O4 particles were coated by SiO2, and Au nanoparticles (AuNPs), respectively. The core-shell structure of these microspheres was confirmed by transmission electron microscopy (TEM) and Power X-ray diffraction (XRD). The magnetic property of the core-shell microspheres was investigated at room temperature. The results indicated that the core-shell composites had a well-retained high magnetic intensity, thus it can be easily separated from the mixture in less than a few minutes by simply using a magnet.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Baohua Zhang ◽  
Fuqiang Guo ◽  
Wei Wang

Single-crystalline ZnTe hierarchical nanostructures have been successfully synthesized by a simple thermal evaporation technology. The as-prepared products were characterized with X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission electron microscope (TEM), and photoluminescence spectrum (PL). These results showed that the ZnTe hierarchical nanostructures consisted of nanowires and nanolumps. The room temperature PL spectrum exhibited a pure green luminescence centered at 545nm. The growth mechanism of hierarchical nanostructure was also discussed.


2011 ◽  
Vol 284-286 ◽  
pp. 645-648
Author(s):  
Xi En Li ◽  
Xu Hua Zhu

Nanosized CoFe2O4powders of 12nm particle size were directly prepared by solution SHS method at room temperature. The overall process involves three steps: formation of homogeneous sol; formatiom of dried gel; and combustion of the dried gel. Experiments revealed that CoFe2O4dried gel derived from citrate and nitrate sol exhibited self-propagation combustion(SHS) at room temperature once it was ignited in air. After self-propagating combustion, the gel directly transforms into nanosized CoFe2O4particles. The self-propagating combustion was considered as a heat-induced exothermic oxidation-reduction reaction between nitrate ions and carboxyl group. Differential thermal analysis-thermogravimetry (DTA-TG) was used to study the decomposition of the precursor. The structure of the nanosized CoFe2O4powders was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM).


1999 ◽  
Vol 581 ◽  
Author(s):  
Frederic V. Mikulec ◽  
Moungi G. Bawendi

ABSTRACTWe present a synthesis of colloidal CdTe nanocrystals whose absolute room temperature quantum yields are routinely above 60%. The preparation is based on the trioctylphosphine oxide (TOPO) method reported by Murray, with a more stalbe tellurium precursor now used as the chalcogenide source. The photoluminescence is continuously tunable over the range 590-760 nm and is as narrow as 135 meV (45 nm) FWHM. No deep trap luminescence is detected for the diameter range 4-11 nm. CdTe nanocrystals are characterized by UV/vis absorption, photoluminescence emission, transmission electron microscopy, and powder X-ray diffraction.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Zahra Ghasemi ◽  
Habibollah Younesi

Nanozeolite NaA was synthesized by the hydrothermal method with silica extracted from rice husk as silica source. Amorphous silica with 87.988 wt%  SiO2was extracted from rice husk ash by a suitable alkali solution. The effect of the crystallization time and the ratio ofNa2O/SiO2on the properties of the final product was investigated. The synthesized nanozeolite was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) techniques, and Brunauer-Emmett-Teller (BET) method. Results revealed that the crystallization time and alkalinity have significant effects on the structural properties of nanozeolite. Nanocrystals NaA with crystal sizes ranging from 50 to 120 nm were synthesized at room temperature with 3 days aging, without adding any organic additives.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


Sign in / Sign up

Export Citation Format

Share Document