Synthesis and Characterization of Strongly Fluorescent CdTe Nanocrystal Colloids

1999 ◽  
Vol 581 ◽  
Author(s):  
Frederic V. Mikulec ◽  
Moungi G. Bawendi

ABSTRACTWe present a synthesis of colloidal CdTe nanocrystals whose absolute room temperature quantum yields are routinely above 60%. The preparation is based on the trioctylphosphine oxide (TOPO) method reported by Murray, with a more stalbe tellurium precursor now used as the chalcogenide source. The photoluminescence is continuously tunable over the range 590-760 nm and is as narrow as 135 meV (45 nm) FWHM. No deep trap luminescence is detected for the diameter range 4-11 nm. CdTe nanocrystals are characterized by UV/vis absorption, photoluminescence emission, transmission electron microscopy, and powder X-ray diffraction.

2011 ◽  
Vol 10 (01n02) ◽  
pp. 237-240 ◽  
Author(s):  
J. P. BORAH ◽  
C. BORGOHAIN ◽  
K. C. SARMA ◽  
K. K. SENAPATI ◽  
P. PHUKAN

The synthesis of composite magnetic nanomaterials has received increasing attention due to their electronic, magnetic, catalytic, and chemical or biological sensing properties. We have prepared cobalt ferrite–zinc sulfide nanocomposites by a chemical route. The synthesized nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and photoluminescence spectrometer (PL). The fluorescent magnetic nanoparticles (FMNPs) had a typical diameter of 30±5 nm and saturation magnetization of 5.8 emu g-1 at room temperature. So, these FMNPs may be potentially applied in different fields such as optoelectronic devices, biolabeling, imaging, drug targeting, bioseparation, magnetic fluid hyperthermia, etc.


2014 ◽  
Vol 602-603 ◽  
pp. 19-22 ◽  
Author(s):  
Lin Qiang Gao ◽  
Hai Yan Chen ◽  
Zhen Wang ◽  
Xin Zou

Nanoscale LiTaO3 powders with perovskite structure were synthesized using the solvothermal technique with glycol as solvent at 240°C for 12h. The powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD was used to elucidate room temperature structures using Rietveld refinement. The powders were pure single pervoskite phase with high crystallinity. FESEM and TEM were used to determine particle size and morphology. The average LiTaO3 grain size was estimated to be < 200nm, and TEM images indicated that LiTaO3 particles had a brick-like morphology. In addition, the effect of the temperature on the LiTaO3 power characterisitics was also detailed studied.


2010 ◽  
Vol 305-306 ◽  
pp. 33-37 ◽  
Author(s):  
S. Lallouche ◽  
M.Y. Debili

This work deals with Al-Cu thin films, deposited onto glass substrates by RF (13.56MHz) magnetron sputtering, and annealed at 773K. The film thickness was approximately the same 3-4µm. They are characterized with respect to microstructure, grain size, microstrain, dislocation density and resistivity versus copper content. Al (Cu) deposits containing 1.8, 7.21, 86.17 and 92.5at%Cu have been investigated. The use of X-ray diffraction analysis and transmission electron microscopy lead to the characterization of different structural features of films deposited at room temperature (< 400K) and after annealing (773K). The resistivity of the films was measured using the four-point probe method. The microstrain profile obtained from XRD thanks to the Williamson-Hall method shows an increase with increasing copper content.


2016 ◽  
Vol 42 ◽  
pp. 47-52
Author(s):  
Dan Dan Huang ◽  
Zhao Dai ◽  
Kun Yang ◽  
Yuan Yuan Chu

The fabrication of gold-loaded magnetite/silica core-shell particles was presented in this paper. First, 250 nm of magnetic Fe3O4 nanoparticles were prepared by solvothermal reaction. Then, the Fe3O4 particles were coated by SiO2, and Au nanoparticles (AuNPs), respectively. The core-shell structure of these microspheres was confirmed by transmission electron microscopy (TEM) and Power X-ray diffraction (XRD). The magnetic property of the core-shell microspheres was investigated at room temperature. The results indicated that the core-shell composites had a well-retained high magnetic intensity, thus it can be easily separated from the mixture in less than a few minutes by simply using a magnet.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Baohua Zhang ◽  
Fuqiang Guo ◽  
Wei Wang

Single-crystalline ZnTe hierarchical nanostructures have been successfully synthesized by a simple thermal evaporation technology. The as-prepared products were characterized with X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission electron microscope (TEM), and photoluminescence spectrum (PL). These results showed that the ZnTe hierarchical nanostructures consisted of nanowires and nanolumps. The room temperature PL spectrum exhibited a pure green luminescence centered at 545nm. The growth mechanism of hierarchical nanostructure was also discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Zahra Ghasemi ◽  
Habibollah Younesi

Nanozeolite NaA was synthesized by the hydrothermal method with silica extracted from rice husk as silica source. Amorphous silica with 87.988 wt%  SiO2was extracted from rice husk ash by a suitable alkali solution. The effect of the crystallization time and the ratio ofNa2O/SiO2on the properties of the final product was investigated. The synthesized nanozeolite was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) techniques, and Brunauer-Emmett-Teller (BET) method. Results revealed that the crystallization time and alkalinity have significant effects on the structural properties of nanozeolite. Nanocrystals NaA with crystal sizes ranging from 50 to 120 nm were synthesized at room temperature with 3 days aging, without adding any organic additives.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3502
Author(s):  
Fangzhou Song ◽  
Masayoshi Uematsu ◽  
Takeshi Yabutsuka ◽  
Takeshi Yao ◽  
Shigeomi Takai

LATP-based composite electrolytes were prepared by sintering the mixtures of LATP precursor and La2O3 nano-powder. Powder X-ray diffraction and scanning electron microscopy suggest that La2O3 can react with LATP during sintering to form fine LaPO4 particles that are dispersed in the LATP matrix. The room temperature conductivity initially increases with La2O3 nano-powder addition showing the maximum of 0.69 mS∙cm−1 at 6 wt.%, above which, conductivity decreases with the introduction of La2O3. The activation energy of conductivity is not largely varied with the La2O3 content, suggesting that the conduction mechanism is essentially preserved despite LaPO4 dispersion. In comparison with the previously reported LATP-LLTO system, although some unidentified impurity slightly reduces the conductivity maximum, the fine dispersion of LaPO4 particles can be achieved in the LATP–La2O3 system.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1141
Author(s):  
Georgia Basina ◽  
Hafsa Khurshid ◽  
Nikolaos Tzitzios ◽  
George Hadjipanayis ◽  
Vasileios Tzitzios

Fe-based colloids with a core/shell structure consisting of metallic iron and iron oxide were synthesized by a facile hot injection reaction of iron pentacarbonyl in a multi-surfactant mixture. The size of the colloidal particles was affected by the reaction temperature and the results demonstrated that their stability against complete oxidation related to their size. The crystal structure and the morphology were identified by powder X-ray diffraction and transmission electron microscopy, while the magnetic properties were studied at room temperature with a vibrating sample magnetometer. The injection temperature plays a very crucial role and higher temperatures enhance the stability and the resistance against oxidation. For the case of injection at 315 °C, the nanoparticles had around a 10 nm mean diameter and revealed 132 emu/g. Remarkably, a stable dispersion was created due to the colloids’ surface functionalization in a nonpolar solvent.


Sign in / Sign up

Export Citation Format

Share Document