Effect of Machining Parameters on Cutting Performance of DSS 2205 and SDSS 2507 materials during Milling Operation

Author(s):  
Pradeep George ◽  
K. Leo Dev Wins ◽  
D. S. Ebenezer Jacob Dhas ◽  
B. Anuja Beatrice
2019 ◽  
Vol 19 (01) ◽  
pp. 2050006 ◽  
Author(s):  
Muhammad Owais Qadri ◽  
Hamidreza Namazi

Analysis of surface quality of machined workpiece is an important issue in machining of materials. For this purpose, scientists analyze how the texture of machined surface changes due to different conditions. Machine vibration is one of the factors that highly affects the surface quality of machined surface. In this research, we analyze the relation between machine vibration and surface quality of machined workpiece. For this purpose, we employ fractal theory and analyze how the complex structure of machined surface changes with the complex structure of machine vibration signal in case of variations of machining parameters, namely, depth of cut, feed rate and spindle speed, in milling operation. Based on the results, variations of surface quality of machined workpiece are related with the variations of complexity of machine vibration signal. The method of analysis employed in this research can be applied to other machining operations in order to find the relation between machine vibration and surface quality of machined workpiece.


Fractals ◽  
2020 ◽  
Vol 28 (06) ◽  
pp. 2050101
Author(s):  
MUHAMMAD OWAIS QADRI ◽  
HAMIDREZA NAMAZI

Tool wear is one of the unwanted phenomena in machining operations where tool has direct contact with the workpiece. Tool wear is an important issue in milling operation that is caused due to different parameters such as machine vibration. Tool wear shows complex structure, and machine vibration is a chaotic signal that also is complex. In this research, we analyze the correlation between tool wear and machine vibration using fractal theory. We run the experiments in which machining parameters, namely depth of cut, feed rate and spindle speed change, and accordingly analyze the variations of fractal dimension of tool wear versus the fractal dimension of machine vibration signal. Based on the obtained results, variations of complexity of tool wear are reversely correlated with the variations of complexity of vibration signal. Fractal analysis could potentially be applied to other machining operations in order to investigate the relation between tool wear and machine vibration.


2012 ◽  
Vol 488-489 ◽  
pp. 836-840 ◽  
Author(s):  
S. Shajari ◽  
M.H. Sadeghi ◽  
H. Hassanpour ◽  
B. Jabbaripour

Inclined surfaces are commonly used in the aerospace and die/mold industries. For machining this kind of surfaces, many aspects have to be considered as machinability considerations including milling strategies, machining parameters and etc. In machining, achieving better quality is challenging task. Various tool-path strategies during milling operation leads to variable surface roughness on machined samples. The objective of this study is to analyze different machining strategies in 3-axis milling of a typical curved geometry part. The machining parameters used in this study, are cutting speed, feedrate and stepover. This paper also presents an approach to develop a mathematical model for measuring Scallop height size and distribution for different machining strategies to show that Scallop height size has direct relation with Surface roughness measurements in each strategy. Finally the optimized strategy based on the results was determined.


2010 ◽  
Vol 443 ◽  
pp. 318-323 ◽  
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou

A multi-scale and multi-phase nanocomposite ceramic cutting tool material Al2O3/TiC/TiN(LTN) with high comprehensive mechanical properties has been successfully fabricated by means of adding micro-scale TiC and nano-scale TiN particles. The cutting performance and wear mechanisms of this advanced ceramic cutting tool were researched by turning two kinds of hardened steel 40Cr and T10A respectively. Compared with the commercial ceramic tool LT55, LTN showed a superior wear resistance with certain machining parameters. The machining tests indicated that the new materials tool is suitable for continuously dry cutting of hardened steel with high hardness at high speed.


Author(s):  
Paramesh Chamble ◽  
M. R. Bharath ◽  
K. Lokeshaa ◽  
S. Christopher Ezhil Singh

In this research paper, machining tool vibration occurs because of relative motion between the work piece and the cutting tool, which influences the surface finish of the machined part and the lifespan of the cutting tool. Some of the parameters that influence machining tool vibration include feed rate, depth of cut and spindle speed. In this study, experimentation is carried out on a conventional vertical milling machine to investigate the influence of machining tool vibration on surface roughness during face milling operation of Al6082 alloy with indexable carbide inserts. The eutectic phase for joint of Al6082 is β-Al5FeSi eutectic phase. The machining is done in dry condition under the different combinations of Machining parameters designed through Taguchi L9 orthogonal array. The machining tool vibrations are captured with the help of tri-axial accelerometer. Analysis of variance (ANOVA) technique used to formulate the experimental data to analyze the effect of each parameter and machining tool vibration on surface roughness.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 3266-3277
Author(s):  
Ümmü K. İşleyen ◽  
Mehmet Karamanoğlu

This paper examined the effect of machining parameters on surface roughness of medium density fiberboard (MDF) machined using a computer numerical control (CNC) router. The machining parameters such as spindle speed, feed rate, depth of cut, and tool diameter were examined for milling. The experiments were conducted at two levels of spindle speeds, four levels of feed rates, two levels of tool diameters, and two levels of axial depths of cut. The surface roughness values of MDF grooved by CNC were measured with stylus-type equipment. Statistical methods were used to determine the effectiveness of the machining parameters on surface roughness. The influence of each milling parameter affecting surface roughness was analyzed using analysis of variance (ANOVA). The significant machining parameters affecting the surface roughness were the feed rate, spindle speed, and tool diameter (p < 0.05). There was no significant influence of axial depth of cut on the surface roughness. The surface roughness decreased with increasing spindle speed and decreasing feed rate. The value of surface roughness increased with the increase of tool diameter.


2009 ◽  
Vol 9 (2) ◽  
pp. e201-e204 ◽  
Author(s):  
M.W. Kim ◽  
H.S. Tak ◽  
M.C. Kang ◽  
K.H. Kim ◽  
I.D. Park ◽  
...  

Fractals ◽  
2019 ◽  
Vol 27 (05) ◽  
pp. 1950076 ◽  
Author(s):  
KUSHAL BISSOONAUTH ◽  
HAMIDREZA NAMAZI

Acquiring the desired surface quality is one of the major efforts in machining of materials. Milling operation is a widely used machining operation to shape the material in different forms. Machining parameters and conditions are two major factors that affect the surface quality of machined workpiece in milling operation. In this paper, we analyze the surface finish of machined workpiece under the variations of machining parameters and conditions (wet and dry conditions) in milling operation. For our analysis, we use fractal dimension as the indicator of complexity of structure. Based on the obtained results, in the case of wet machining condition, by increasing the depth of cut, feed rate and spindle speed in separate experiments, the fractal dimension of machined surface increases. However, the obtained results in the case of dry machining condition are not consistent with the variations of different machining parameters. The obtained results will be discussed in terms of complex structure of machined surface. The method of analysis employed in this research can be investigated with other machining operations to check how the machining parameters and conditions affect the surface quality of machined surface.


Sign in / Sign up

Export Citation Format

Share Document