A FAST AND ACCURATE ALGORITHM FOR DIPLOID INDIVIDUAL HAPLOTYPE RECONSTRUCTION

2013 ◽  
Vol 11 (04) ◽  
pp. 1350010 ◽  
Author(s):  
JINGLI WU ◽  
BINBIN LIANG

Haplotypes can provide significant information in many research fields, including molecular biology and medical therapy. However, haplotyping is much more difficult than genotyping by using only biological techniques. With the development of sequencing technologies, it becomes possible to obtain haplotypes by combining sequence fragments. The haplotype reconstruction problem of diploid individual has received considerable attention in recent years. It assembles the two haplotypes for a chromosome given the collection of fragments coming from the two haplotypes. Fragment errors significantly increase the difficulty of the problem, and which has been shown to be NP-hard. In this paper, a fast and accurate algorithm, named FAHR, is proposed for haplotyping a single diploid individual. Algorithm FAHR reconstructs the SNP sites of a pair of haplotypes one after another. The SNP fragments that cover some SNP site are partitioned into two groups according to the alleles of the corresponding SNP site, and the SNP values of the pair of haplotypes are ascertained by using the fragments in the group that contains more SNP fragments. The experimental comparisons were conducted among the FAHR, the Fast Hare and the DGS algorithms by using the haplotypes on chromosome 1 of 60 individuals in CEPH samples, which were released by the International HapMap Project. Experimental results under different parameter settings indicate that the reconstruction rate of the FAHR algorithm is higher than those of the Fast Hare and the DGS algorithms, and the running time of the FAHR algorithm is shorter than those of the Fast Hare and the DGS algorithms. Moreover, the FAHR algorithm has high efficiency even for the reconstruction of long haplotypes and is very practical for realistic applications.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rhoda Mae C. Simora ◽  
De Xing ◽  
Max R. Bangs ◽  
Wenwen Wang ◽  
Xiaoli Ma ◽  
...  

AbstractCRISPR/Cas9-based gene knockout in animal cells, particularly in teleosts, has proven to be very efficient with regards to mutation rates, but the precise insertion of exogenous DNA or gene knock-in via the homology-directed repair (HDR) pathway has seldom been achieved outside of the model organisms. Here, we succeeded in integrating with high efficiency an exogenous alligator cathelicidin gene into a targeted non-coding region of channel catfish (Ictalurus punctatus) chromosome 1 using two different donor templates (synthesized linear dsDNA and cloned plasmid DNA constructs). We also tested two different promoters for driving the gene, zebrafish ubiquitin promoter and common carp β-actin promoter, harboring a 250-bp homologous region flanking both sides of the genomic target locus. Integration rates were found higher in dead fry than in live fingerlings, indicating either off-target effects or pleiotropic effects. Furthermore, low levels of mosaicism were detected in the tissues of P1 individuals harboring the transgene, and high transgene expression was observed in the blood of some P1 fish. This can be an indication of the localization of cathelicidin in neutrophils and macrophage granules as also observed in most antimicrobial peptides. This study marks the first use of CRISPR/Cas9 HDR for gene integration in channel catfish and may contribute to the generation of a more efficient system for precise gene integration in catfish and other aquaculture species, and the development of gene-edited, disease-resistant fish.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 158
Author(s):  
Ming-Jen Lee ◽  
Inyoul Lee ◽  
Kai Wang

The development of new sequencing technologies in the post-genomic era has accelerated the identification of causative mutations of several single gene disorders. Advances in cell and animal models provide insights into the underlining pathogenesis, which facilitates the development and maturation of new treatment strategies. The progress in biochemistry and molecular biology has established a new class of therapeutics—the short RNAs and expressible long RNAs. The sequences of therapeutic RNAs can be optimized to enhance their stability and translatability with reduced immunogenicity. The chemically-modified RNAs can also increase their stability during intracellular trafficking. In addition, the development of safe and high efficiency carriers that preserves the integrity of therapeutic RNA molecules also accelerates the transition of RNA therapeutics into the clinic. For example, for diseases that are caused by genetic defects in a specific protein, an effective approach termed “protein replacement therapy” can provide treatment through the delivery of modified translatable mRNAs. Short interference RNAs can also be used to treat diseases caused by gain of function mutations or restore the splicing aberration defects. Here we review the applications of newly developed RNA-based therapeutics and its delivery and discuss the clinical evidence supporting the potential of RNA-based therapy in single-gene neurological disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daichi G. Suzuki ◽  
Hiroshi Wada ◽  
Shin-ichi Higashijima

AbstractThe lamprey represents the oldest group of living vertebrates and has been a key organism in various research fields such as evolutionary developmental biology and neuroscience. However, no knock-in technique for this animal has been established yet, preventing application of advanced genetic techniques. Here, we report efficient generation of F0 knock-in lampreys by CRISPR-Cas9-mediated genome editing. A donor plasmid containing a heat-shock promoter was co-injected with a short guide RNA (sgRNA) for genome digestion, a sgRNA for donor plasmid digestion, and Cas9 mRNA. Targeting different genetic loci, we succeeded in generating knock-in lampreys expressing photoconvertible protein Dendra2 as well as those expressing EGFP. With its simplicity, design flexibility, and high efficiency, we propose that the present method has great versatility for various experimental uses in lamprey research and that it can also be applied to other “non-model” organisms.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 862
Author(s):  
Zulema Udaondo ◽  
Kanchana Sittikankaew ◽  
Tanaporn Uengwetwanit ◽  
Thidathip Wongsurawat ◽  
Chutima Sonthirod ◽  
...  

With the advantages that long-read sequencing platforms such as Pacific Biosciences (Menlo Park, CA, USA) (PacBio) and Oxford Nanopore Technologies (Oxford, UK) (ONT) can offer, various research fields such as genomics and transcriptomics can exploit their benefits. Selecting an appropriate sequencing platform is undoubtedly crucial for the success of the research outcome, thus there is a need to compare these long-read sequencing platforms and evaluate them for specific research questions. This study aims to compare the performance of PacBio and ONT platforms for transcriptomic analysis by utilizing transcriptome data from three different tissues (hepatopancreas, intestine, and gonads) of the juvenile black tiger shrimp, Penaeus monodon. We compared three important features: (i) main characteristics of the sequencing libraries and their alignment with the reference genome, (ii) transcript assembly features and isoform identification, and (iii) correlation of the quantification of gene expression levels for both platforms. Our analyses suggest that read-length bias and differences in sequencing throughput are highly influential factors when using long reads in transcriptome studies. These comparisons can provide a guideline when designing a transcriptome study utilizing these two long-read sequencing technologies.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Hien Trinh ◽  
Khoa Truong Nguyen ◽  
Lam Van Nguyen ◽  
Huy Quang Pham ◽  
Can Thu Huong ◽  
...  

Next generation sequencing technologies have provided numerous opportunities for application in the study of whole plant genomes. In this study, we present the sequencing and bioinformatic analyses of five typical rice landraces including threeindicaand twojaponicawith potential blast resistance. A total of 688.4 million 100 bp paired-end reads have yielded approximately 30-fold coverage to compare with the Nipponbare reference genome. Among them, a small number of reads were mapped to both chromosomes and organellar genomes. Over two million and eight hundred thousand single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) inindicaandjaponicalines have been determined, which potentially have significant impacts on multiple transcripts of genes. SNP deserts, contiguous SNP-low regions, were found on chromosomes 1, 4, and 5 of all genomes of rice examined. Based on the distribution of SNPs per 100 kilobase pairs, the phylogenetic relationships among the landraces have been constructed. This is the first step towards revealing several salient features of rice genomes in Vietnam and providing significant information resources to further marker-assisted selection (MAS) in rice breeding programs.


2021 ◽  
Vol 9 (12) ◽  
pp. 2428
Author(s):  
Laura Baxter ◽  
Proyash Roy ◽  
Emma Picot ◽  
Jess Watts ◽  
Alex Jones ◽  
...  

Here, we report an improved and complete genome sequence of Sinorhizobium (Ensifer) meliloti strain WSM1022, a microsymbiont of Medicago species, revealing its tripartite structure. This improved genome sequence was generated combining Illumina and Oxford nanopore sequencing technologies to better understand the symbiotic properties of the bacterium. The 6.75 Mb WSM1022 genome consists of three scaffolds, corresponding to a chromosome (3.70 Mb) and the pSymA (1.38 Mb) and pSymB (1.66 Mb) megaplasmids. The assembly has an average GC content of 62.2% and a mean coverage of 77X. Genome annotation of WSM1022 predicted 6058 protein coding sequences (CDSs), 202 pseudogenes, 9 rRNAs (3 each of 5S, 16S, and 23S), 55 tRNAs, and 4 ncRNAs. We compared the genome of WSM1022 to two other rhizobial strains, closely related Sinorhizobium (Ensifer) meliloti Sm1021 and Sinorhizobium (Ensifer) medicae WSM419. Both WSM1022 and WSM419 species are high-efficiency rhizobial strains when in symbiosis with Medicago truncatula, whereas Sm1021 is ineffective. Our findings report significant genomic differences across the three strains with some similarities between the meliloti strains and some others between the high efficiency strains WSM1022 and WSM419. The addition of this high-quality rhizobial genome sequence in conjunction with comparative analyses will help to unravel the features that make a rhizobial symbiont highly efficient for nitrogen fixation.


Author(s):  
Shilpa Garg

High-quality chromosome-scale haplotype sequences— of diploid genomes, polyploid genomes and metagenomes — provide important insights into genetic variation associated with disease and biodiversity. However, whole-genome short read sequencing does not yield haplotype information that spans whole chromosomes directly. Computational assembly of shorter haplotype fragments is required for haplotype reconstruction, which can be challenging owing to limited fragment lengths and high haplotype and repeat variability across genomes. Recent advancements in long-read and chromosome-scale sequencing technologies, alongside computational innovations, are improving the reconstruction of haplotypes at the level of whole chromosomes. Here, we review recent methodological progress in these areas and discuss perspectives that could enable routine high-quality haplotype reconstruction in clinical and evolutionary studies.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shilpa Garg

AbstractHigh-quality chromosome-scale haplotype sequences of diploid genomes, polyploid genomes, and metagenomes provide important insights into genetic variation associated with disease and biodiversity. However, whole-genome short read sequencing does not yield haplotype information spanning whole chromosomes directly. Computational assembly of shorter haplotype fragments is required for haplotype reconstruction, which can be challenging owing to limited fragment lengths and high haplotype and repeat variability across genomes. Recent advancements in long-read and chromosome-scale sequencing technologies, alongside computational innovations, are improving the reconstruction of haplotypes at the level of whole chromosomes. Here, we review recent and discuss methodological progress and perspectives in these areas.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 288
Author(s):  
Jiawei Lu ◽  
Bo Dai ◽  
Kan Wang ◽  
Yan Long ◽  
Zhuoqing Yang ◽  
...  

Cell trapping is a very useful technique in a variety of cell-based assays and cellular research fields. It requires a high-throughput, high-efficiency operation to isolate cells of interest and immobilize the captured cells at specific positions. In this study, a dentate spiral microfluidic structure is proposed for cell trapping. The structure consists of a main spiral channel connecting an inlet and an out and a large number of dentate traps on the side of the channel. The density of the traps is high. When a cell comes across an empty trap, the cell suddenly makes a turn and enters the trap. Once the trap captures enough cells, the trap becomes closed and the following cells pass by the trap. The microfluidic structure is optimized based on the investigation of the influence over the flow. In the demonstration, 4T1 mouse breast cancer cells injected into the chip can be efficiently captured and isolated in the different traps. The cell trapping operates at a very high flow rate (40 μL/s) and a high trapping efficiency (>90%) can be achieved. The proposed high-throughput cell-trapping technique can be adopted in the many applications, including rapid microfluidic cell-based assays and isolation of rare circulating tumor cells from a large volume of blood sample.


2014 ◽  
Vol 556-562 ◽  
pp. 4871-4874 ◽  
Author(s):  
Chao Zhao ◽  
Xing Xin Li ◽  
Kong Xia

Taken the problem of data communication in collaborative virtual maintenance training system into consideration, the technology of JMS was used to transmission of information, which solved the asynchronous communication between each client in system, and ensured the timeliness, accuracy and high efficiency during the whole process. Forward In recent years, using virtual reality technology for maintenance training is one of the popular research fields, and many virtual maintenance training systems have been developed [1,2]. However, none of these systems could be used to collaborative training for multi-users. One difficulty is that how to share the information between clients. In other words, the way of communication is considerable to enable to share information as reasonably, timely and efficiently as possible and do not affect the training. For this reason, JMS (Java Message Service) technology is presented to solve the communication problem in collaborative training in the article.


Sign in / Sign up

Export Citation Format

Share Document