scholarly journals Generation of knock-in lampreys by CRISPR-Cas9-mediated genome engineering

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daichi G. Suzuki ◽  
Hiroshi Wada ◽  
Shin-ichi Higashijima

AbstractThe lamprey represents the oldest group of living vertebrates and has been a key organism in various research fields such as evolutionary developmental biology and neuroscience. However, no knock-in technique for this animal has been established yet, preventing application of advanced genetic techniques. Here, we report efficient generation of F0 knock-in lampreys by CRISPR-Cas9-mediated genome editing. A donor plasmid containing a heat-shock promoter was co-injected with a short guide RNA (sgRNA) for genome digestion, a sgRNA for donor plasmid digestion, and Cas9 mRNA. Targeting different genetic loci, we succeeded in generating knock-in lampreys expressing photoconvertible protein Dendra2 as well as those expressing EGFP. With its simplicity, design flexibility, and high efficiency, we propose that the present method has great versatility for various experimental uses in lamprey research and that it can also be applied to other “non-model” organisms.

mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Valmik K. Vyas ◽  
G. Guy Bushkin ◽  
Douglas A. Bernstein ◽  
Matthew A. Getz ◽  
Magdalena Sewastianik ◽  
...  

ABSTRACT We have created new vectors for clustered regularly interspaced short palindromic repeat (CRISPR) mutagenesis in Candida albicans , Saccharomyces cerevisiae , Candida glabrata , and Naumovozyma castellii . These new vectors permit a comparison of the requirements for CRISPR mutagenesis in each of these species and reveal different dependencies for repair of the Cas9 double-stranded break. Both C. albicans and S. cerevisiae rely heavily on homology-directed repair, whereas C. glabrata and N. castellii use both homology-directed and nonhomologous end-joining pathways. The high efficiency of these vectors permits the creation of unmarked deletions in each of these species and the recycling of the dominant selection marker for serial mutagenesis in prototrophs. A further refinement, represented by the "Unified" Solo vectors, incorporates Cas9, guide RNA, and repair template into a single vector, thus enabling the creation of vector libraries for pooled screens. To facilitate the design of such libraries, we have identified guide sequences for each of these species with updated guide selection algorithms. IMPORTANCE CRISPR-mediated genome engineering technologies have revolutionized genetic studies in a wide range of organisms. Here we describe new vectors and guide sequences for CRISPR mutagenesis in the important human fungal pathogens C. albicans and C. glabrata , as well as in the related yeasts S. cerevisiae and N. castellii . The design of these vectors enables efficient serial mutagenesis in each of these species by leaving few, if any, exogenous sequences in the genome. In addition, we describe strategies for the creation of unmarked deletions in each of these species and vector designs that permit the creation of vector libraries for pooled screens. These tools and strategies promise to advance genetic engineering of these medically and industrially important species.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Steven Lin ◽  
Brett T Staahl ◽  
Ravi K Alla ◽  
Jennifer A Doudna

The CRISPR/Cas9 system is a robust genome editing technology that works in human cells, animals and plants based on the RNA-programmed DNA cleaving activity of the Cas9 enzyme. Building on previous work (<xref ref-type="bibr" rid="bib13">Jinek et al., 2013</xref>), we show here that new genetic information can be introduced site-specifically and with high efficiency by homology-directed repair (HDR) of Cas9-induced site-specific double-strand DNA breaks using timed delivery of Cas9-guide RNA ribonucleoprotein (RNP) complexes. Cas9 RNP-mediated HDR in HEK293T, human primary neonatal fibroblast and human embryonic stem cells was increased dramatically relative to experiments in unsynchronized cells, with rates of HDR up to 38% observed in HEK293T cells. Sequencing of on- and potential off-target sites showed that editing occurred with high fidelity, while cell mortality was minimized. This approach provides a simple and highly effective strategy for enhancing site-specific genome engineering in both transformed and primary human cells.


2020 ◽  
Vol 21 (24) ◽  
pp. 9604
Author(s):  
Edyta Janik ◽  
Marcin Niemcewicz ◽  
Michal Ceremuga ◽  
Lukasz Krzowski ◽  
Joanna Saluk-Bijak ◽  
...  

The discovery of clustered, regularly interspaced short palindromic repeats (CRISPR) and their cooperation with CRISPR-associated (Cas) genes is one of the greatest advances of the century and has marked their application as a powerful genome engineering tool. The CRISPR–Cas system was discovered as a part of the adaptive immune system in bacteria and archaea to defend from plasmids and phages. CRISPR has been found to be an advanced alternative to zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) for gene editing and regulation, as the CRISPR–Cas9 protein remains the same for various gene targets and just a short guide RNA sequence needs to be altered to redirect the site-specific cleavage. Due to its high efficiency and precision, the Cas9 protein derived from the type II CRISPR system has been found to have applications in many fields of science. Although CRISPR–Cas9 allows easy genome editing and has a number of benefits, we should not ignore the important ethical and biosafety issues. Moreover, any tool that has great potential and offers significant capabilities carries a level of risk of being used for non-legal purposes. In this review, we present a brief history and mechanism of the CRISPR–Cas9 system. We also describe on the applications of this technology in gene regulation and genome editing; the treatment of cancer and other diseases; and limitations and concerns of the use of CRISPR–Cas9.


2014 ◽  
Author(s):  
Fillip Port ◽  
Hui-Min Chen ◽  
Tzumin Lee ◽  
Simon L Bullock

The type II CRISPR/Cas system has recently emerged as a powerful method to manipulate the genomes of various organisms. Here, we report a novel toolbox for high efficiency genome engineering of Drosophila melanogaster consisting of transgenic Cas9 lines and versatile guide RNA (gRNA) expression plasmids. Systematic evaluation reveals Cas9 lines with ubiquitous or germline restricted patterns of activity. We also demonstrate differential activity of the same gRNA expressed from different U6 snRNA promoters, with the previously untested U6:3 promoter giving the most potent effect. Choosing an appropriate combination of Cas9 and gRNA allows targeting of essential and non-essential genes with transmission rates ranging from 25% - 100%. We also provide evidence that our optimized CRISPR/Cas tools can be used for offset nicking-based mutagenesis and, in combination with oligonucleotide donors, to precisely edit the genome by homologous recombination with efficiencies that do not require the use of visible markers. Lastly, we demonstrate a novel application of CRISPR/Cas-mediated technology in revealing loss-of-function phenotypes in somatic cells following efficient biallelic targeting by Cas9 expressed in a ubiquitous or tissue-restricted manner. In summary, our CRISPR/Cas tools will facilitate the rapid evaluation of mutant phenotypes of specific genes and the precise modification of the genome with single nucleotide precision. Our results also pave the way for high throughput genetic screening with CRISPR/Cas.


Author(s):  
Phuc Leo H. Vo ◽  
Carlotta Ronda ◽  
Sanne E. Klompe ◽  
Ethan E. Chen ◽  
Christopher Acree ◽  
...  

Tn7-like transposons are pervasive mobile genetic elements in bacteria that mobilize using heteromeric transposase complexes comprising distinct targeting modules. We recently described a Tn7-like transposon from Vibrio cholerae that employs a Type I-F CRISPR–Cas system for RNA-guided transposition, in which Cascade directly recruits transposition proteins to integrate donor DNA downstream of genomic target sites complementary to CRISPR RNA. However, the requirement for multiple expression vectors and low overall integration efficiencies, particularly for large genetic payloads, hindered the practical utility of the transposon. Here, we present a significantly improved INTEGRATE (insertion of transposable elements by guide RNA-assisted targeting) system for targeted, multiplexed, and marker-free DNA integration of up to 10 kilobases at ~100% efficiency. Using multi-spacer CRISPR arrays, we achieved simultaneous multiplex insertions in three genomic loci, and facile multi-loci deletions when combining orthogonal integrases and recombinases. Finally, we demonstrated robust function in other biomedically- and industrially-relevant bacteria, and developed an accessible computational algorithm for guide RNA design. This work establishes INTEGRATE as a versatile and portable tool that enables multiplex and kilobase-scale genome engineering.


2015 ◽  
Vol 112 (11) ◽  
pp. 3570-3575 ◽  
Author(s):  
Kabin Xie ◽  
Bastian Minkenberg ◽  
Yinong Yang

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system is being harnessed as a powerful tool for genome engineering in basic research, molecular therapy, and crop improvement. This system uses a small guide RNA (gRNA) to direct Cas9 endonuclease to a specific DNA site; thus, its targeting capability is largely constrained by the gRNA-expressing device. In this study, we developed a general strategy to produce numerous gRNAs from a single polycistronic gene. The endogenous tRNA-processing system, which precisely cleaves both ends of the tRNA precursor, was engineered as a simple and robust platform to boost the targeting and multiplex editing capability of the CRISPR/Cas9 system. We demonstrated that synthetic genes with tandemly arrayed tRNA–gRNA architecture were efficiently and precisely processed into gRNAs with desired 5′ targeting sequences in vivo, which directed Cas9 to edit multiple chromosomal targets. Using this strategy, multiplex genome editing and chromosomal-fragment deletion were readily achieved in stable transgenic rice plants with a high efficiency (up to 100%). Because tRNA and its processing system are virtually conserved in all living organisms, this method could be broadly used to boost the targeting capability and editing efficiency of CRISPR/Cas9 toolkits.


Frequenz ◽  
2020 ◽  
Vol 74 (11-12) ◽  
pp. 383-392
Author(s):  
Rajveer S. Yaduvanshi ◽  
Richa Gupta ◽  
Saurabh Katiyar

AbstractSmartdielectric resonator antenna (DRA) having beam control mechanism is anew area to be explored by antenna researchers. Proposed new geometry DRA has low loss, design flexibility, high efficiency, compact size and desired radiated beam control. Developing beam control in new geometry DRAs is investigated for the first time in this letter. Unique technique for beam control and beam width control is proposed using pit top and mount top DRA. Gain is controlled from 5.0 to 9.98 dBi and beam is controlled from ±30° to ±70° in broadside radiation pattern. U shape pit DRA has maximum directive gain of 9.98 dBi and efficiency 98% at 5.8 GHz frequency. Measured and simulated results of radiation pattern and reflection coefficient are found to be in close proximity. Hardware of U shape pit top DRA, mount top DRA, left side arc top DRA, right side arc shape top DRA is developed and investigated. Mobile and cellular communication network need wide coverage, hence large beam width is required. Narrowing of beam width at higher order mode is also achieved.


Author(s):  
Eugene V. Gasanov ◽  
Justyna Jędrychowska ◽  
Michal Pastor ◽  
Malgorzata Wiweger ◽  
Axel Methner ◽  
...  

AbstractCurrent methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately at the intended site of intervention. We here propose an improved version of CRISPR-Cas9 genome editing that relies on two complementary guide RNAs instead of one. Two guide RNAs delimit the intervention site and allow the precise deletion of several nucleotides at the target site. As proof of concept, we generated heterozygous deletion mutants of the kcng4b, gdap1, and ghitm genes in the zebrafish Danio rerio using this method. A further analysis by high-resolution DNA melting demonstrated a high efficiency and a low background of unpredicted mutations. The use of two complementary gRNAs improves CRISPR-Cas9 specificity and allows the creation of predictable and precise mutations in the genome of D. rerio.


2021 ◽  
Vol 8 (7) ◽  
pp. 122
Author(s):  
Parul Singh ◽  
Syed Azmal Ali

Humans are sorely over-dependent on livestock for their daily basic need of food in the form of meat, milk, and eggs. Therefore, genetic engineering and transgenesis provide the opportunity for more significant gains and production in a short span of time. One of the best strategies is the genetic alteration of livestock to enhance the efficiency of food production (e.g., meat and milk), animal health, and welfare (animal population and disease). Moreover, genome engineering in the bovine is majorly focused on subjects such as disease resistance (e.g., tuberculosis), eradicate allergens (e.g., beta-lactoglobulin knock-out), products generation (e.g., meat from male and milk from female), male or female birth specifically (animal sexing), the introduction of valuable traits (e.g., stress tolerance and disease resistance) and their wellbeing (e.g., hornlessness). This review addressed the impressive genome engineering method CRISPR, its fundamental principle for generating highly efficient target-specific guide RNA, and the accompanying web-based tools. However, we have covered the remarkable roadmap of the CRISPR method from its conception to its use in cattle. Additionally, we have updated the comprehensive information on CRISPR-based gene editing in cattle.


2015 ◽  
Vol 1 ◽  
pp. e33 ◽  
Author(s):  
Elisha D. Roberson

CRISPR/Cas9 is emerging as one of the most-used methods of genome modification in organisms ranging from bacteria to human cells. However, the efficiency of editing varies tremendously site-to-site. A recent report identified a novel motif, called the 3′GG motif, which substantially increases the efficiency of editing at all sites tested inC. elegans. Furthermore, they highlighted that previously published gRNAs with high editing efficiency also had this motif. I designed a Python command-line tool, ngg2, to identify 3′GG gRNA sites from indexed FASTA files. As a proof-of-concept, I screened for these motifs in six model genomes:Saccharomyces cerevisiae,Caenorhabditis elegans,Drosophila melanogaster,Danio rerio,Mus musculus, andHomo sapiens. I also scanned the genomes of pig (Sus scrofa) and African elephant (Loxodonta africana) to demonstrate the utility in non-model organisms. I identified more than 60 million single match 3′GG motifs in these genomes. Greater than 61% of all protein coding genes in the reference genomes had at least one unique 3′GG gRNA site overlapping an exon. In particular, more than 96% of mouse and 93% of human protein coding genes have at least one unique, overlapping 3′GG gRNA. These identified sites can be used as a starting point in gRNA selection, and the ngg2 tool provides an important ability to identify 3′GG editing sites in any species with an available genome sequence.


Sign in / Sign up

Export Citation Format

Share Document