DYNAMIC ROLL-AND-RISE MOTION BY AN ADULT-SIZE HUMANOID ROBOT

2004 ◽  
Vol 01 (03) ◽  
pp. 497-516 ◽  
Author(s):  
YASUO KUNIYOSHI ◽  
YOSHIYUKI OHMURA ◽  
KOJI TERADA ◽  
AKIHIKO NAGAKUBO

Whole-body dynamic actions under various contacts with the environment will be very important for future humanoid robots to support human tasks in unstructured environments. Such skills are very difficult to realize using the standard motion control methodology based on asymptotic convergence to the successive desired states. An alternative approach would be to exploit the passive dynamics of the body under constrained motion, and to navigate through multiple dynamics by imposing the least control in order to robustly reach the goal state. As a first example of such a strategy, we propose and investigate a "Roll-and-Rise" motion. This is a fully dynamic whole-body task including underactuated motion whose state trajectory is insoluble, and unpredictable perturbations due to complex contacts with the ground. First, we analyze the global structure of Roll-and-Rise motion. Then the critical points are analyzed using simplified models and simulations. The results suggest a non-uniform control strategy which focuses on sparse critical points in the global phase space, and allows deviations and trade-offs at other parts. Finally, experiments with a real adult-size humanoid robot are successfully carried out. The robot rose from a flat-lying posture to a crouching posture within 2 seconds.

2022 ◽  
Vol 41 (1) ◽  
Author(s):  
Marina L. Butovskaya ◽  
Victoria V. Rostovtseva ◽  
Anna A. Mezentseva

Abstract Background In this paper, we investigate facial sexual dimorphism and its’ association with body dimorphism in Maasai, the traditional seminomadic population of Tanzania. We discuss findings on other human populations and possible factors affecting the developmental processes in Maasai. Methods Full-face anthropological photographs were obtained from 305 Maasai (185 men, 120 women) aged 17–90 years. Facial shape was assessed combining geometric morphometrics and classical facial indices. Body parameters were measured directly using precise anthropological instruments. Results Sexual dimorphism in Maasai faces was low, sex explained 1.8% of the total shape variance. However, male faces were relatively narrower and vertically prolonged, with slightly wider noses, narrower-set and lower eyebrows, wider mouths, and higher forehead hairline. The most sexually dimorphic regions of the face were the lower jaw and the nose. Facial width-to-height ratio (fWHR), measured in six known variants, revealed no significant sexual dimorphism. The allometric effects on facial traits were mostly related to the face growth, rather than the growth of the whole body (body height). Significant body dimorphism was demonstrated, men being significantly higher, with larger wrist diameter and hand grip strength, and women having higher BMI, hips circumferences, upper arm circumferences, triceps skinfolds. Facial and body sexual dimorphisms were not associated. Conclusions Facial sex differences in Maasai are very low, while on the contrary, the body sexual dimorphism is high. There were practically no associations between facial and body measures. These findings are interpreted in the light of trade-offs between environmental, cultural, and sexual selection pressures.


2009 ◽  
Vol 21 (3) ◽  
pp. 311-316 ◽  
Author(s):  
Kensuke Harada ◽  
◽  
Mitsuharu Morisawa ◽  
Shin-ichiro Nakaoka ◽  
Kenji Kaneko ◽  
...  

For the purpose of realizing the humanoid robot walking on uneven terrain, this paper proposes the kinodynamic gait planning method where both kinematics and dynamics of the system are considered. We can simultaneously plan both the foot-place and the whole-body motion taking the dynamical balance of the robot into consideration. As a dynamic constraint, we consider the differential equation of the robot's CoG. To solve this constraint, we use a walking pattern generator. We randomly sample the configuration space to search for the path connecting the start and the goal configurations. To show the effectiveness of the proposed methods, we show simulation and experimental results where the humanoid robot HRP-2 walks on rocky cliff with hands contacting the environment.


2008 ◽  
Vol 5 (4) ◽  
pp. 195-211 ◽  
Author(s):  
Matthew Howard ◽  
Stefan Klanke ◽  
Michael Gienger ◽  
Christian Goerick ◽  
Sethu Vijayakumar

Movement generation that is consistent with observed or demonstrated behaviour is an efficient way to seed movement planning in complex, high-dimensional movement systems like humanoid robots. We present a method for learning potential-based policies from constrained motion data. In contrast to previous approaches to direct policy learning, our method can combine observations from a variety of contexts where different constraints are in force, to learn the underlying unconstrained policy in form of its potential function. This allows us to generalise and predict behaviour where novel constraints apply. We demonstrate our approach on systems of varying complexity, including kinematic data from the ASIMO humanoid robot with 22 degrees of freedom.


2013 ◽  
Vol 10 (03) ◽  
pp. 1350021 ◽  
Author(s):  
CHUNG-HSIEN KUO ◽  
HUNG-CHYUN CHOU ◽  
SHOU-WEI CHI ◽  
YU-DE LIEN

Biped humanoid robots have been developed to successfully perform human-like locomotion. Based on the use of well-developed locomotion control systems, humanoid robots are further expected to achieve high-level intelligence, such as vision-based obstacle avoidance navigation. To provide standard obstacle avoidance navigation problems for autonomous humanoid robot researches, the HuroCup League of Federation of International Robot-Soccer Association (FIRA) and the RoboCup Humanoid League defined the conditions and rules in competitions to evaluate the performance. In this paper, the vision-based obstacle avoidance navigation approaches for humanoid robots were proposed in terms of combining the techniques of visual localization, obstacle map construction and artificial potential field (APF)-based reactive navigations. Moreover, a small-size humanoid robot (HuroEvolutionJR) and an adult-size humanoid robot (HuroEvolutionAD) were used to evaluate the performance of the proposed obstacle avoidance navigation approach. The navigation performance was evaluated with the distance of ground truth trajectory collected from a motion capture system. Finally, the experiment results demonstrated the effectiveness of using vision-based localization and obstacle map construction approaches. Moreover, the APF-based navigation approach was capable of achieving smaller trajectory distance when compared to conventional just-avoiding-nearest-obstacle-rule approach.


2008 ◽  
Vol 05 (01) ◽  
pp. 87-118 ◽  
Author(s):  
BERTRAND TONDU

Starting from a biomechanical study of the shoulder complex, the relevance of a serial nine d.o.f. kinematic model of the human arm, including a clavicle-like link, was analyzed. It is shown that this partial biomimetic joint model of the upper limb is able to mimic the ability of the natural arm to practically eliminate internal and bound singularities over a large frontal zone, so as to maintain its elbow laterally to the body. In this sense, it appears to be an advanced solution for increasing the dexterity of humanoid robot upper limbs, thus replacing classical seven d.o.f. anthropomorphic arms where a device mimicking the shoulder girdle mechanism is absent.


2011 ◽  
Vol 30 (13) ◽  
pp. 1596-1608 ◽  
Author(s):  
Atsushi Konno ◽  
Tomoya Myojin ◽  
Takaaki Matsumoto ◽  
Teppei Tsujita ◽  
Masaru Uchiyama

When a human needs to generate a large force, they will try to apply an impulsive force with dynamic cooperation of the whole body. In this paper we first discuss impact dynamics of humanoid robots and then propose a way to generate impact motions for a humanoid robot to exert a large force while keeping a balance. In the impact motion generation, Sequential Quadratic Programming (SQP) is used to solve a non-linear programming problem in which an objective function and constraints may be non-linear functions of the motion parameters. Impact motions are generated using SQP so that the impact force is maximized while the angular momentum is minimized. Breaking wooden boards with a Karate chop is taken as a case study because it is a typical example of tasks that utilize impulsive force. A humanoid robot motion for the Karate chop is generated by the proposed method. In order to validate the designed motion, experiments are carried out using a small humanoid robot Fujitsu HOAP-2. The Karate-chop motion generated by the proposed method is compared with the motion designed by a human. The results of breaking the wooden boards experiments clearly show the effectiveness of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Jacopo Zenzeri ◽  
Dalia De Santis ◽  
Vishwanathan Mohan ◽  
Maura Casadio ◽  
Pietro Morasso

The goal of this paper is to analyze the static stability of a computational architecture, based on the Passive Motion Paradigm, for coordinating the redundant degrees of freedom of a humanoid robot during whole-body reaching movements in bipedal standing. The analysis is based on a simulation study that implements the Functional Reach Test, originally developed for assessing the danger of falling in elderly people. The study is carried out in the YARP environment that allows realistic simulations with the iCub humanoid robot.


2011 ◽  
Vol 201-203 ◽  
pp. 1978-1982
Author(s):  
Tie Jun Zhao

This research is aimed at dynamically stable motion and safety of mobile humanoid robots expected to work in a human living space. The mechanism of the mobile humanoid robot YIREN is described. A highly flexible anthropomorphic 7-DOF robotic arm and a new waist configuration with parallel driving motor are developed. Because the dynamitic behavior of manipulator and waist has an effect on the stability of mobile humanoid robots, the dynamitic model is built. By using the zero moment point, dynamic effect of the waist is obtained. A basic control method of whole body cooperative dynamic moving is proposed that uses waist cooperative motion to compensate for moment generated by the trajectory of the arms and the correctness of analysis is verified by experiments.


2020 ◽  
Vol 17 (1) ◽  
pp. 172988142090596
Author(s):  
Zichen Nie

The humanoid robot has the human shape and has great advantages in assisting human life and work. The ability to work, especially in a dynamic, unstructured environment, is an important prerequisite for humanoid robots to assist humans in their mission. Table tennis hitting involves a variety of key technologies such as visual inspection, trajectory planning, and artificial intelligence. It is an important research example that can reflect the ability of humanoid robots. First, according to the requirements of humanoid robots in the human living environment and the requirements of coordinating table tennis batting movements throughout the body, a method of establishing a humanoid robot model was analyzed, and a control system was designed to meet the needs of rapid table tennis batting. Second, a motion model construction and optimization algorithm based on intelligent learning training is proposed. Based on the parameter knowledge base established by the multiple trajectories of table tennis, a kind of electromagnetic mechanism and D-optimality regularized orthogonal minima are introduced. Design a two-pass method (regularized orthogonal least squares method + D-optimality) to learn the two-level learning method, which is used to learn the key parameters of the table tennis model. Third, for human-like robotic table tennis fast-moving, it is necessary to satisfy both the task and the stability requirements and to propose a stability-optimized whole-system coordinated trajectory planning method. The effectiveness of the proposed humanoid robot table tennis hitting motion planning and stability control method is verified by experiments.


Sign in / Sign up

Export Citation Format

Share Document