Dynamic Cooperative Manipulating Pattern Generation for Mobile Humanoid Robot Using Waist Moment Compensation

2011 ◽  
Vol 201-203 ◽  
pp. 1978-1982
Author(s):  
Tie Jun Zhao

This research is aimed at dynamically stable motion and safety of mobile humanoid robots expected to work in a human living space. The mechanism of the mobile humanoid robot YIREN is described. A highly flexible anthropomorphic 7-DOF robotic arm and a new waist configuration with parallel driving motor are developed. Because the dynamitic behavior of manipulator and waist has an effect on the stability of mobile humanoid robots, the dynamitic model is built. By using the zero moment point, dynamic effect of the waist is obtained. A basic control method of whole body cooperative dynamic moving is proposed that uses waist cooperative motion to compensate for moment generated by the trajectory of the arms and the correctness of analysis is verified by experiments.

2021 ◽  
Vol 15 ◽  
Author(s):  
Qiubo Zhong ◽  
Yaoyun Li ◽  
Caiming Zheng ◽  
Tianyao Shen

The implementation of low-energy cooperative movements is one of the key technologies for the complex control of the movements of humanoid robots. A control method based on optimal parameters is adopted to optimize the energy consumption of the cooperative movements of two humanoid robots. A dynamic model that satisfies the cooperative movements is established, and the motion trajectory of two humanoid robots in the process of cooperative manipulation of objects is planned. By adopting the control method with optimal parameters, the parameters optimization of the energy consumption index function is performed and the stability judgment index of the robot in the movement process is satisfied. Finally, the effectiveness of the method is verified by simulations and experimentations.


Author(s):  
Seungmoon Song ◽  
Young-Jae Ryoo ◽  
Dennis W. Hong

In this paper, we propose and demonstrate an omnidirectional walking engine that achieves stable walking using feedback from an inertial measurement unit (IMU). The 3D linear inverted pendulum model (3D-LIPM) is used as a simplified model of the robot, the zero moment point (ZMP) criterion is used as the stability criterion, and only the feedback from the IMU is utilized for stabilization. The proposed walking engine consists of two parts; the omnidirectional gait generator, and the stability controller. ZMP equations, derived based on the 3D-LIPM, are used in the omnidirectional gait generator. The solutions of the differential equations are directly used which reduces the computation cost compare to other existing methods. Two kinds of feedback controllers are implemented for the stability controller; one is the indirect reference ZMP controller, and the other is the indirect joint controller. The walking engine is tested on a lightweight, full-sized, 21-degree-of-freedom (DOF) humanoid robot CHARLI-L (Cognitive Humanoid Autonomous Robot with Learning Intelligence, version Lightweight) which stands 141 cm tall and weighs only 12.7 kg. The design goals of CHARLI-L are low development cost, lightweight, and simple design, which all match well with the proposed walking engine. The results of the experiments present the efficacy of our approach.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaokun Leng ◽  
Songhao Piao ◽  
Lin Chang ◽  
Zhicheng He ◽  
Zheng Zhu

Biped robot research has always been a research focus in the field of robot research. Among them, the motion control system, as the core content of the biped robot research, directly determines the stability of the robot walking. Traditional biped robot control methods suffer from low model accuracy, poor dynamic characteristics of motion controllers, and poor motion robustness. In order to improve the walking robustness of the biped robot, this paper solves the problem from three aspects: planning method, mathematical model, and control method, forming a robot motion control framework based on the whole-body dynamics model and quadratic planning. The robot uses divergent component of motion for trajectory planning and introduces the friction cone contact model into the control frame to improve the accuracy of the model. A complete constraint equation system can ensure that the solution of the controller meets the dynamic characteristics of the biped robot. An optimal controller is designed based on the control framework, and starting from the Lyapunov function, the convergence of the optimal controller is proved. Finally, the experimental results show that the method is robust and has certain anti-interference ability.


2019 ◽  
Vol 9 (13) ◽  
pp. 2657 ◽  
Author(s):  
Fangzhou Zhao ◽  
Junyao Gao

Humanoid robots are expected to have broad applications due to their biped mobility and human-like shape. To increase the walking speed, it is necessary to increase the power for driving the joints of legs. However, the resulting mass increasing of the legs leads to a rotational slip when a robot is walking fast. In this paper, a 3D three-mass model is proposed, in which both the trunk and thighs are regarded as an inverted pendulum, and the shanks and feet are considered as mass-points under no constraints with the trunk. Then based on the model, a friction constraint method is proposed to plan the trajectory of the swing leg in order to achieve the fastest walking speed without any rotational slip. Furthermore, the compensation for zero-moment point (ZMP) is calculated based on the 3D three-mass model, and the hip trajectory is obtained based on the compensated ZMP trajectory by using the preview control method, thus improving the robot’s overall ZMP follow-up effect. This planning method involves simple calculations but reliable results. Finally, simulations confirm that the rotational slip is avoided while stable and fast walking is realized, with free joints of the waist and arms, which then could be planned for other tasks.


Robotica ◽  
2008 ◽  
Vol 26 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Vadakkepat Prahlad ◽  
Goswami Dip ◽  
Chia Meng-Hwee

SUMMARYA novel method of Zero-Moment-Point (ZMP) compensation is proposed to improve the stability of locomotion of a biped, which is subjected to disturbances. A compensating torque is injected into the ankle-joint of the foot of the robot to improve stability. The value of the compensating torque is computed from the reading of the force sensors located at the four corners of each foot. The effectiveness of the method is verified on a humanoid robot, MANUS-I. With the compensation technique, the robot successfully rejected disturbances in different forms. It carried an additional weight of 390 gm (17% of body weight) while walking. Also, it walked up a 10° slope and walked down a 3° slope.


Author(s):  
Xiang Li ◽  
◽  
Hiroki Imanishi ◽  
Mamoru Minami ◽  
Takayuki Matsuno ◽  
...  

Biped locomotion created by a controller based on Zero-Moment Point (ZMP) known as reliable control method looks different from human’s walking on the view point that ZMP-based walking does not include falling state, and it’s like monkey walking because of knee-bended walking profiles. However, the walking control that does not depend on ZMP is vulnerable to turnover. Therefore, keeping the event-driven walking of dynamical motion stable is important issue for realization of human-like natural walking. In this research, a walking model of humanoid robot including slipping, bumping, surface-contacting and line-contacting of foot is discussed, and its dynamical equation is derived by the Extended NE method. In this paper we introduce the humanoid model which including the slipping foot and verify the model.


2012 ◽  
Vol 09 (02) ◽  
pp. 1250008 ◽  
Author(s):  
TEPPEI TSUJITA ◽  
ATSUSHI KONNO ◽  
SHUNSUKE KOMIZUNAI ◽  
YUKI NOMURA ◽  
TOMOYA MYOJIN ◽  
...  

In order to exert a large force on an environment, it is effective to apply impulsive force. We describe the motions in which tasks are performed by applying impulsive force as "impact motions." This paper proposes a way to generate impact motions for humanoid robots to exert a large force and the feedback control method for driving a nail robustly. The impact motion is optimized based on a three dimensional model using sequential quadratic programming (SQP). In this research, a nailing task is taken as an example of impact motion. A dominant parameter for driving a nail strongly is revealed and motions which maximize the parameter are generated considering the robot's postural stability. In order to evaluate the proposed scheme, a life-sized humanoid robot drives nails into a plate made of chemical wood. The optimized motion is compared with a motion designed heuristically by a human. Average driving depth is clearly increased by the proposed method.


2004 ◽  
Vol 01 (03) ◽  
pp. 497-516 ◽  
Author(s):  
YASUO KUNIYOSHI ◽  
YOSHIYUKI OHMURA ◽  
KOJI TERADA ◽  
AKIHIKO NAGAKUBO

Whole-body dynamic actions under various contacts with the environment will be very important for future humanoid robots to support human tasks in unstructured environments. Such skills are very difficult to realize using the standard motion control methodology based on asymptotic convergence to the successive desired states. An alternative approach would be to exploit the passive dynamics of the body under constrained motion, and to navigate through multiple dynamics by imposing the least control in order to robustly reach the goal state. As a first example of such a strategy, we propose and investigate a "Roll-and-Rise" motion. This is a fully dynamic whole-body task including underactuated motion whose state trajectory is insoluble, and unpredictable perturbations due to complex contacts with the ground. First, we analyze the global structure of Roll-and-Rise motion. Then the critical points are analyzed using simplified models and simulations. The results suggest a non-uniform control strategy which focuses on sparse critical points in the global phase space, and allows deviations and trade-offs at other parts. Finally, experiments with a real adult-size humanoid robot are successfully carried out. The robot rose from a flat-lying posture to a crouching posture within 2 seconds.


Author(s):  
Masato Hirose ◽  
Kenichi Ogawa

Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's ‘challenging spirit’.


Sign in / Sign up

Export Citation Format

Share Document