scholarly journals Viscous cold dark matter in agreement with observations

2014 ◽  
Vol 11 (02) ◽  
pp. 1460013 ◽  
Author(s):  
Hermano Velten

We discuss bulk viscous cosmological models. Since the bulk viscous pressure is negative, viable viscous cosmological scenarios with late time accelerated expansion can in principle be constructed. After discussing some alternative models based on bulk viscous effects we will focus on a model very similar to the standard ΛvCDM. We argue that a ΛvCDM model, where we assign a very small (albeit perceptible) bulk viscosity to dark matter is in agreement with available cosmological observations. Hence, we work with the concept of viscous Cold Dark Matter (vCDM). At the level of the perturbations, the growth of vCDM structures is slightly suppressed when compared with the standard CDM ones. Having in mind that the small scale problems of the ΛCDM model are related to an excess of clustering, our proposal seems to indicate a possible direction for solving the serious drawbacks of the CDM paradigm within the standard cosmological model.

2015 ◽  
Vol 24 (06) ◽  
pp. 1550045 ◽  
Author(s):  
Savvas Nesseris ◽  
Domenico Sapone

Current and upcoming surveys will measure the cosmological parameters with an extremely high accuracy. The primary goal of these observations is to eliminate some of the currently viable cosmological models created to explain the late-time accelerated expansion (either real or only inferred). However, most of the statistical tests used in cosmology have a strong requirement: the use of a model to fit the data. Recently there has been an increased interest on finding tests that are model independent, i.e. to have a function that depends entirely on observed quantities and not on the model, see for instance [C. Clarkson, B. Bassett and T. H. C. Lu, Phys. Rev. Lett.101 (2008) 011301, arXiv:0712.3457 [astro-ph]]. In this paper, we present an alternative consistency check at the perturbative level for a homogeneous and isotropic Universe filled with a dark energy component. This test makes use of the growth of matter perturbations data and it is able to detect a deviation from the standard cosmological model, which could later be attributed to a clustering dark energy component, a tension in the data or a modification of gravity, within the framework of a Friedmann–Lemaître–Robertson–Walker (FLRW) universe.


2016 ◽  
Vol 31 (12) ◽  
pp. 1650078
Author(s):  
Amir Ghalee

We study the late-time cosmology of a scalar field with a kinetic term non-minimally coupled to gravity. It is demonstrated that the scalar field dominate the radiation matter and the cold dark matter (CDM). Moreover, we show that eventually the scalar field will be condensed and results in an accelerated expansion. The metric perturbations around the condensed phase of the scalar field are investigated and it has been shown that the ghost instability and gradient instability do not exist.


2019 ◽  
Vol 485 (2) ◽  
pp. 2861-2876 ◽  
Author(s):  
Benjamin V Church ◽  
Philip Mocz ◽  
Jeremiah P Ostriker

ABSTRACT Although highly successful on cosmological scales, cold dark matter (CDM) models predict unobserved overdense ‘cusps’ in dwarf galaxies and overestimate their formation rate. We consider an ultralight axion-like scalar boson which promises to reduce these observational discrepancies at galactic scales. The model, known as fuzzy dark matter (FDM), avoids cusps, suppresses small-scale power, and delays galaxy formation via macroscopic quantum pressure. We compare the substructure and density fluctuations of galactic dark matter haloes comprised of ultralight axions to conventional CDM results. Besides self-gravitating subhaloes, FDM includes non-virialized overdense wavelets formed by quantum interference patterns, which are an efficient source of heating to galactic discs. We find that, in the solar neighbourhood, wavelet heating is sufficient to give the oldest disc stars a velocity dispersion of ${\sim } {30}{\, \mathrm{km\, s}^{-1}}$ within a Hubble time if energy is not lost from the disc, the velocity dispersion increasing with stellar age as σD ∝ t0.4 in agreement with observations. Furthermore, we calculate the radius-dependent velocity dispersion and corresponding scaleheight caused by the heating of this dynamical substructure in both CDM and FDM with the determination that these effects will produce a flaring that terminates the Milky Way disc at $15\!-\!20{\, \mathrm{kpc}}$. Although the source of thickened discs is not known, the heating due to perturbations caused by dark substructure cannot exceed the total disc velocity dispersion. Therefore, this work provides a lower bound on the FDM particle mass of ma > 0.6 × 10−22 eV. Furthermore, FDM wavelets with this particle mass should be considered a viable mechanism for producing the observed disc thickening with time.


Recent observational and theoretical results on galaxy clustering are reviewed. A major difficulty in relating observations to theory is that the former refer to luminous material whereas the latter is most directly concerned with the gravitationally dominant but invisible dark matter. The simple assumption that the distribution of galaxies generally follows that of the mass appears to conflict with evidence suggesting that galaxies of different kinds are clustered in different ways. If galaxies are indeed biased tracers of the mass, then dynamical estimates of the mean cosmic density, which give Ω « 0.2 may underestimate the global value of Ω. There are now several specific models for the behaviour of density fluctuations from very early times to the present epoch. The late phases of this evolution need to be followed by N -body techniques; simulations of scale-free universes and of universes dominated by various types of elementary particles are discussed. In the former case, the models evolve in a self-similar way; the resulting correlations have a steeper slope than that oberved for the galaxy distribution unless the primordial power spectral index n « 2. Universes dominated by light neutrinos acquire a large coherence length at early times. As a result, an early filamentary phase develops into a present day distribution that is more strongly clustered than observed galaxies and is dominated by a few clumps with masses larger than those of any known object. If the dark matter consists of ‘cold’ particles such as photinos or axions, then structure builds up from subgalactic scales in a roughly hierarchical way. The observed pattern of galaxy clustering can be reproduced if either Ω « 0.2 and the galaxies are distributed as the mass, or if Ω — 1, H 0 = 50 km s -1 Mpc -1 and the galaxies form only at high peaks of the smoothed linear density field. The open model, however, is marginally ruled out by the observed small-scale isotropy of the microwave background, whereas the flat one is consistent with such observations. With no further free parameters a flat cold dark-matter universe produces the correct abundance of rich galaxy clusters and of galactic halos; the latter have flat rotation curves with amplitudes spanning the observed range. Preliminary calculations indicate that the properties of voids may be consistent with the data, but the correlations of rich clusters appear to be somewhat weaker than those reported for Abell clusters.


1996 ◽  
Vol 466 ◽  
pp. 13 ◽  
Author(s):  
Anatoly Klypin ◽  
Joel Primack ◽  
Jon Holtzman

2004 ◽  
Vol 220 ◽  
pp. 91-98 ◽  
Author(s):  
J. E. Taylor ◽  
J. Silk ◽  
A. Babul

Models of structure formation based on cold dark matter predict that most of the small dark matter haloes that first formed at high redshift would have merged into larger systems by the present epoch. Substructure in present-day haloes preserves the remains of these ancient systems, providing the only direct information we may ever have about the low-mass end of the power spectrum. We describe some recent attempts to model halo substructure down to very small masses, using a semi-analytic model of halo formation. We make a preliminary comparison between the model predictions, observations of substructure in lensed systems, and the properties of local satellite galaxies.


2003 ◽  
Vol 208 ◽  
pp. 245-260
Author(s):  
C.S. Frenk

A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationaly dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure in now beginning to emerge.


Universe ◽  
2019 ◽  
Vol 5 (8) ◽  
pp. 185
Author(s):  
Muhammad Sharif ◽  
Qanitah Ama-Tul-Mughani

In this paper, we study the phase space portrait of homogeneous and isotropic universe by taking different coupling functions between dark energy models and bulk viscous dark matter. The dimensionless quantities are introduced to establish an autonomous set of equations. To analyze the stability of the cosmos, we evaluate critical points and respective eigenvalues for different dynamical quantities. For bulk viscous matter and radiation in tachyon coupled field, these points show stable evolution when γ ≫ δ but accelerated expansion of the universe for δ > 1 9 . The stability of the universe increases for some stationary points which may correspond to the late-time expansion for the coupled phantom field.


2020 ◽  
Vol 495 (3) ◽  
pp. 3233-3251 ◽  
Author(s):  
Aseem Paranjape ◽  
Shadab Alam

ABSTRACT We study the Voronoi volume function (VVF) – the distribution of cell volumes (or inverse local number density) in the Voronoi tessellation of any set of cosmological tracers (galaxies/haloes). We show that the shape of the VVF of biased tracers responds sensitively to physical properties such as halo mass, large-scale environment, substructure, and redshift-space effects, making this a hitherto unexplored probe of both primordial cosmology and galaxy evolution. Using convenient summary statistics – the width, median, and a low percentile of the VVF as functions of average tracer number density – we explore these effects for tracer populations in a suite of N-body simulations of a range of dark matter models. Our summary statistics sensitively probe primordial features such as small-scale oscillations in the initial matter power spectrum (as arise in models involving collisional effects in the dark sector), while being largely insensitive to a truncation of initial power (as in warm dark matter models). For vanilla cold dark matter (CDM) cosmologies, the summary statistics display strong evolution and redshift-space effects, and are also sensitive to cosmological parameter values for realistic tracer samples. Comparing the VVF of galaxies in the Galaxies & Mass Assembly (GAMA) survey with that of abundance-matched CDM (sub)haloes tentatively reveals environmental effects in GAMA beyond halo mass (modulo unmodelled satellite properties). Our exploratory analysis thus paves the way for using the VVF as a new probe of galaxy evolution physics as well as the nature of dark matter and dark energy.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750049 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Ines G. Salako ◽  
Faiza Gulshan

We discuss the cosmological implications of interacting pilgrim dark energy (PDE) models (with Hubble, Granda–Oliveros and generalized ghost cutoffs) with cold dark matter ([Formula: see text]CDM) in fractal cosmology by assuming the flat universe. We observe that the Hubble parameter lies within observational suggested ranges while deceleration parameter represents the accelerated expansion behavior of the universe. The equation of state (EoS) parameter ([Formula: see text]) corresponds to the quintessence region and phantom region for different cases of [Formula: see text]. Further, we can see that [Formula: see text]–[Formula: see text] (where prime indicates the derivative with respect to natural logarithmic of scale factor) plane describes the freezing and thawing regions and also corresponds to [Formula: see text] limit for some cases of [Formula: see text] (PDE parameter). It is also noted that the [Formula: see text]–[Formula: see text] (state-finder parameters) plane corresponds to [Formula: see text] limit and also shows the Chaplygin as well as phantom/quintessence behavior. It is observed that pilgrim dark energy models in fractal cosmology expressed the consistent behavior with recent observational schemes.


Sign in / Sign up

Export Citation Format

Share Document