Covariant statistical mechanics of non-Hamiltonian systems

2018 ◽  
Vol 15 (02) ◽  
pp. 1850017
Author(s):  
Vahid Hosseinzadeh ◽  
Kourosh Nozari

In this paper, using the elegant language of differential forms, we provide a covariant formulation of the equilibrium statistical mechanics of non-Hamiltonian systems. The key idea of the paper is to focus on the structure of phase space and its kinematical and dynamical roles. While in the case of Hamiltonian systems, the structure of the phase space is a symplectic structure (a nondegenerate closed two-form), we consider an almost symplectic structure for the more general case of non-Hamiltonian systems. An almost symplectic structure is a nondegenerate but not necessarily closed two-form structure. Consequently, the dynamics becomes non-Hamiltonian and based on the fact that the structure is nondegenerate, we can also define a volume element. With a well-defined volume in hand, we derive the Liouville equation and find an invariant statistical state. Recasting non-Hamiltonian systems in terms of the almost symplectic geometry has at least two advantages: the formalism is covariant and therefore does not depend on coordinates and there is no confusion in the determination of the natural volume element of the system. For clarification, we investigate the application of the formalism in two examples in which the underlying geometry of the phase space is locally conformal symplectic geometry.

2004 ◽  
Vol 19 (15) ◽  
pp. 2473-2493 ◽  
Author(s):  
MAURICIO MONDRAGÓN ◽  
MERCED MONTESINOS

The various phase spaces involved in the dynamics of parametrized nonrelativistic Hamiltonian systems are displayed by using Crnkovic and Witten's covariant canonical formalism. It is also pointed out that in Dirac's canonical formalism there exists a freedom in the choice of the symplectic structure on the extended phase space and in the choice of the equations that define the constraint surface with the only restriction that these two choices combine in such a way that any pair (of these two choices) generates the same gauge transformation. The consequence of this freedom on the algebra of observables is also discussed.


2021 ◽  
pp. 2150030
Author(s):  
Ivan Contreras ◽  
Nicolás Martínez Alba

In this paper, we extend the AKSZ formulation of the Poisson sigma model to more general target spaces, and we develop the general theory of graded geometry for poly-symplectic and poly-Poisson structures. In particular, we prove a Schwarz-type theorem and transgression for graded poly-symplectic structures, recovering the action functional and the poly-symplectic structure of the reduced phase space of the poly-Poisson sigma model, from the AKSZ construction.


The two-dimensional guiding centre plasma and a system of interacting line vortices in an ideal fluid are examples of Hamiltonian systems with bounded phase space. The statistical mechanics of such systems is investigated. An interesting feature is that they can exist in negative temperature states which show observable intrinsic characteristics, such as the formation of clusters of particles.


2004 ◽  
Vol 19 (27) ◽  
pp. 2069-2081 ◽  
Author(s):  
ALBERTO ESCALANTE

We show that the Witten covariant phase space for p-branes with thickness in an arbitrary background is endowed of a symplectic potential, which although is not important to the dynamics of the system, plays a relevant role on the phase space, allowing us to generate a symplectic structure for the theory and therefore give a covariant description of canonical formalism for quantization.


2015 ◽  
Vol 92 (2) ◽  
Author(s):  
V. Hosseinzadeh ◽  
M. A. Gorji ◽  
K. Nozari ◽  
B. Vakili

Author(s):  
Anne-Laure Fauchille ◽  
Bram van den Eijnden ◽  
Kevin Taylor ◽  
Peter David Lee

À l’échelle du laboratoire, les roches argileuses sont des matériaux hétérogènes dont le comportement thermo-hydromécanique est en grande partie contrôlé par la microstructure. Le choix du nombre et de la taille des échantillons à étudier en laboratoire est déterminant pour appréhender la variabilité des propriétés de la roche argileuse à petite échelle. Cet article présente une méthode statistique permettant de préciser la surface (ou le volume) et le nombre d’échantillons à prendre en compte pour qu’une propriété p choisie caractérisant la microstructure, soit statistiquement représentative. Initialement établie dans un cas général par Kanit et al. (2003. Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14): 3647–3679), cette méthode consiste à partitionner un échantillon de propriété moyenne [see formula in PDF] connue, en sous-échantillons de surface D × D afin de calculer l’écart-type et l’erreur relative de la mesure de p en fonction de D. Cette méthode permet ainsi de définir des surfaces élémentaires représentatives de p en tenant compte de l’erreur relative par rapport à [see formula in PDF]. La méthode est d’abord présentée dans des cas généraux en 2D et 3D, et un exemple type est ensuite développé en 2D pour caractériser la fraction argileuse d’une lamine sédimentaire de Bowland (Royaume-Uni). La fraction surfacique argileuse est choisie comme propriété p, à partir d’une image grand-champ en microscopie électronique à balayage. La méthode est applicable en 2D et 3D sur les matériaux finement divisés autant sur les roches que sur les sols argileux, tant que l’échantillon considéré contient suffisamment d’éléments figurés (inclusions rigides ou pores dans une matrice par exemple) pour permettre l’utilisation des statistiques. L’apport principal visé pour la communauté des ingénieurs est dans la mesure du possible un meilleur ciblage de la quantité d’échantillons à prélever en forage pour mieux évaluer la variabilité des paramètres macroscopiques des roches argileuses. Les limites de la méthode sont ensuite discutées.


2014 ◽  
Vol 23 (12) ◽  
pp. 1442006 ◽  
Author(s):  
Laurent Freidel ◽  
Robert G. Leigh ◽  
Djordje Minic

In a natural extension of the relativity principle, we speculate that a quantum theory of gravity involves two fundamental scales associated with both dynamical spacetime as well as dynamical momentum space. This view of quantum gravity is explicitly realized in a new formulation of string theory which involves dynamical phase-space and in which spacetime is a derived concept. This formulation naturally unifies symplectic geometry of Hamiltonian dynamics, complex geometry of quantum theory and real geometry of general relativity. The spacetime and momentum space dynamics, and thus dynamical phase-space, is governed by a new version of the renormalization group (RG).


2018 ◽  
Vol 19 (4) ◽  
pp. 1081-1114 ◽  
Author(s):  
Jeremiah Birrell ◽  
Jan Wehr

Sign in / Sign up

Export Citation Format

Share Document