Maximal proper force, black hole horizons and matter as curvature in momentum space

2018 ◽  
Vol 15 (03) ◽  
pp. 1850035 ◽  
Author(s):  
Carlos Castro

Starting with the study of the geometry on the cotangent bundle (phase space), it is shown that the maximal proper force condition, in the case of a uniformly accelerated observer of mass [Formula: see text] along the [Formula: see text] axis, leads to a minimum value of [Formula: see text] lying [Formula: see text] the Rindler wedge and given by the black hole horizon radius [Formula: see text]. Whereas in the uniform circular motion case, we find that the maximal proper force condition implies that the radius of the circle cannot exceed the value of the horizon radius [Formula: see text]. A correspondence is found between the black hole horizon radius and a singularity in the curvature of momentum space. The fact that the geometry (metric) in phase spaces is observer-dependent (on the momentum of the massive particle/observer) indicates further that the matter stress energy tensor and vacuum energy in the underlying space-time may admit an interpretation in terms of the curvature in momentum spaces. Some final comments are made pertaining to the Asymptotic Safety program in gravity and why phase space geometry seems to be a proper arena for a space–time–matter unification.

1999 ◽  
Vol 14 (18) ◽  
pp. 2905-2920 ◽  
Author(s):  
REMO GARATTINI

A one-loop correction of the quasilocal energy in the Schwarzschild background, with flat space as a reference metric, is performed by means of a variational procedure in the Hamiltonian framework. We examine the graviton sector in momentum space, in the lowest possible state. An application to the black hole pair creation via the Casimir energy is presented. Implications on the foamlike scenario are discussed.


2018 ◽  
Vol 15 (10) ◽  
pp. 1850171 ◽  
Author(s):  
M. Chabab ◽  
H. El Moumni ◽  
S. Iraoui ◽  
K. Masmar ◽  
S. Zhizeh

In this work, we study the phase transition of the charged-AdS black hole surrounded by quintessence via an alternative extended phase space defined by the charge square [Formula: see text] and her conjugate [Formula: see text], a quantity proportional to the inverse of horizon radius, while the cosmological constant is kept fixed. The equation of state is derived under the form [Formula: see text] and the critical behavior of such black hole analyzed. In addition, we examine the role of the quintessence parameter and its effects on phase transitions. Besides that, we explore the connection between the microscopic structure and Ruppeiner geothermodynamics. We also find that, at certain points of the phase space, the Ruppeiner curvature is characterised by the presence of singularities that are interpreted as a signal of the occurrence of the phase transitions.


2017 ◽  
Vol 32 (33) ◽  
pp. 1750196 ◽  
Author(s):  
Gaurav Yadav ◽  
Baby Komal ◽  
Bibhas Ranjan Majhi

The energy of a particle moving on a space–time, in principle, can affect the background metric. The modifications to it depend on the ratio of energy of the particle and the Planck energy, known as rainbow gravity. Here, we find the explicit expressions for the coordinate transformations from rainbow Minkowski space–time to accelerated frame. The corresponding metric is also obtained which we call as rainbow Rindler metric. So far we are aware of that no body has done it in a concrete manner. Here, this is found from the first principle and hence all the parameters are properly identified. The advantage of this is that the calculated Unruh temperature is compatible with the Hawking temperature of the rainbow black hole horizon, obtained earlier. Since the accelerated frame has several importance in revealing various properties of gravity, we believe that the present result will not only fill that gap, but also help to explore different aspects of rainbow gravity paradigm.


2010 ◽  
Vol 19 (14) ◽  
pp. 2423-2428 ◽  
Author(s):  
SAMIR D. MATHUR

Are there any degrees of freedom on the black hole horizon? Using the "membrane paradigm" we can reproduce coarse-grained physics outside the hole by assuming a fictitious membrane just outside the horizon. But to solve the information puzzle we need "real" degrees of freedom at the horizon, which can modify Hawking's evolution of quantum modes. We argue that recent results on gravitational microstates imply a set of real degrees of freedom just outside the horizon; the state of the hole is a linear combination of rapidly oscillating gravitational solutions with support concentrated just outside the horizon radius. The collective behavior of these microstate solutions may give a realization of the membrane paradigm, with the fictitious membrane now replaced by real, explicit degrees of freedom.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Yubo Ma ◽  
Yang Zhang ◽  
Lichun Zhang ◽  
Liang Wu ◽  
Ying Gao ◽  
...  

AbstractIt is well known that de Sitter(dS) black holes generally have a black hole horizon and a cosmological horizon, both of which have Hawking radiation. But the radiation temperature of the two horizons is generally different, so dS black holes do not meet the requirements of thermal equilibrium stability, which brings certain difficulties to the study of the thermodynamic characteristics of black holes. In this paper, dS black hole is regarded as a thermodynamic system, and the effective thermodynamic quantities of the system are obtained. The influence of various state parameters on the effective thermodynamic quantities in the massive gravity space-time is discussed. The condition of the phase transition of the de Sitter black hole in massive gravity space-time is given. We consider that the total entropy of the dS black hole is the sum of the corresponding entropy of the two horizons plus an extra term from the correlation of the two horizons. By comparing the entropic force of interaction between black hole horizon and the cosmological horizon with Lennard-Jones force between two particles, we find that the change rule of entropic force between the two system is surprisingly the same. The research will help us to explore the real reason of accelerating expansion of the universe.


2001 ◽  
Vol 16 (26) ◽  
pp. 1703-1710 ◽  
Author(s):  
DONAM YOUM

We study static brane configurations in the bulk background of the topological black holes in asymptotically flat space–time and find that such configurations are possible even for flat black hole horizon, unlike the AdS black hole case. We construct the brane world model with an orbifold structure S1/Z2 in such bulk background and study massless bulk scalar field.


Author(s):  
Sanjeevan Singha Roy ◽  
Aruna Harikant ◽  
Deep Bhattacharjee

This paper is a technical review for a more deliberate paper (Bhattacharya & Lahiri, 2007) where it has been shown that on a positive cosmological scale with Λ>0 having a cosmic horizon scale ~1/√Λ, there exists the soft electric hairs for the solution having the T_00 components of the stress-energy tensor T_μν i.e., ρ=0 on black hole horizon B_H having the maximum density at black hole singularity B_S where cosmic horizon C_H and black hole horizon B_H has only been considered. KEYWORDS: Black Hole – Cosmic Horizon – TOV Limit – Stress-Energy Tensor – Positive Cosmological Constant


Sign in / Sign up

Export Citation Format

Share Document