One-Step Hydrothermal Synthesis of Bi2S3-TiO2-RGO Composites with Enhanced Visible Light Photocatalytic Activities

NANO ◽  
2018 ◽  
Vol 13 (05) ◽  
pp. 1850051 ◽  
Author(s):  
Yanan Li ◽  
Zhongmin Liu ◽  
Yaru Li ◽  
Yongchuan Wu ◽  
Jitao Chen ◽  
...  

The Bi2S3-TiO2-RGO composites were synthesized by a facile one-step hydrothermal method and applied for the photocatalytic degradation of Rhodamine B (Rh B) under the visible light. The Bi2S3-TiO2-RGO composites were characterized by transmission electron microscopy, X-ray diffraction, Raman and Fourier transform infrared spectrometer. The results indicated that the Bi2S3-TiO2-RGO composites were successfully prepared, and Ti-O-C and S-C bonds were existing among Bi2S3, TiO2 as well as RGO. Furthermore, the photocatalytic ability of Bi2S3-TiO2-RGO composites was excellent under visible light due to its responding to the whole visible light region, low recombination rate of photogenerated electron–hole pairs and relatively negative conduction band. Rh B photocatalytic degradation rate was 99.5% after 50[Formula: see text]min and still could reach 98.4% after five cycles. Finally, a formation mechanism as well as a photocatalytic mechanism of Bi2S3-TiO2-RGO composites were proposed based on the experimental results.

2011 ◽  
Vol 1292 ◽  
Author(s):  
Dengrong Cai ◽  
Jianmin Li ◽  
Shundong Bu ◽  
Shengwen Yu ◽  
Dengren Jin ◽  
...  

ABSTRACTA facile hydrothermal route assisted by polyethylene glycol (PEG) 400 was utilized to synthesize single-phase Bi2Fe4O9 crystallites. X-ray diffraction results showed the products with PEG 400 of 30 g/L exhibited a preferred growth along the (001) plane. Transmission electron microscopy indicated that the morphology of the as-prepared Bi2Fe4O9 crystallites with PEG 400 were plake-like and rod-like. Strong absorption in visible-light region of the products was characterized by UV-vis diffuse reflectance spectrum (UV-DRS). The photocatalytic activity of Bi2Fe4O9 crystallites was evaluated on degradation of methyl orange (MO) under visible light irradiation. For 3 h irradiation, the degradation ratio was increased to 93% with the aid of a small amount of H2O2. The analysis of FT-IR spectra proved that the Bi2Fe4O9 catalysts were remained stable after the photocalytic reactions.


NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650114 ◽  
Author(s):  
Dan Li ◽  
Jianwei Li ◽  
Caiqin Han ◽  
Xinsheng Zhao ◽  
Haipeng Chu ◽  
...  

Few-layered MoS2 nanostructures were successfully synthesized by a simple hydrothermal method without the addition of any catalysts or surfactants. Their morphology, structure and photocatalytic activity were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, electrochemical impedance spectra and UV-Vis absorption spectroscopy, respectively. These results show that the MoS2 nanostructures synthesized at 180[Formula: see text]C exhibit an optimal visible light photocatalytic activity (99%) in the degradation of Rhodamine B owing to the relatively easier adsorption of pollutants, higher visible light absorption and lower electron–hole pair recombination.


2019 ◽  
Vol 233 (5) ◽  
pp. 595-607 ◽  
Author(s):  
Mohsin Siddique ◽  
Noor Muhammad Khan ◽  
Muhammad Saeed

Abstract Nanosized, magnetically separable bismuth ferrite (BFO) nanoparticles, pertaining a crystallite size in the range of 14–15 nm were prepared via facile sol-gel technique. The product was characterized by scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The product was explored for the photocatalytic mineralization of rhodamine B (RB) dye in aqueous medium. The effect of different investigational parameters such as amount of photocatalyst, initial dye concentration and irradiation time on the photocatalytic degradation of RB was studied. The results reveal that the catalyst shows good degrading ability under normal pH and visible light conditions. BFO nanoparticles demonstrated a strong absorption ability in the visible-light region, which lead to efficient photocatalytic degradation of RB dye The reaction system was heterogeneous in nature in which the catalyst can be separated by a normal magnet.


2017 ◽  
Vol 48 ◽  
pp. 49-61 ◽  
Author(s):  
A. Malathi ◽  
J. Madhavan

In the present study, visible light active CuS/CdS nanocomposites of various compositions (1%, 2% and 3%) were synthesized via wet impregnation method and these photocatalysts were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and UV-visible diffuse reflectance spectroscopy (DRS). The photocatalytic degradation efficiency of the synthesized photocatalysts was evaluated from the degradation of methylene blue (MB) under the visible light irradiation. Among all compositions, a 1% CuS/CdS nanocomposite showed about 89.5% degradation in 90 min than the pure CuS, CdS and other composites. Photoluminescence and photoelectrochemical measurements indicated that the 1% CuS/CdS nanocomposite greatly enhanced the charge generation and restrained the recombination of photogenerated electron-hole pairs. A possible mechanism of photocatalytic degradation has been proposed.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
Hamed Rashidi ◽  
Ali Ahmadpour ◽  
Fatemeh Bamoharram ◽  
Seyed Zebarjad ◽  
Majid Heravi ◽  
...  

AbstractZnO nanostructures were synthesised in a hydrothermal reaction of zinc acetate in the presence of molybdophosphoric acid (H3[PMo12O40]) as well as its vanadium-substituted acid (H4[PMo11VO40]) at various times, temperatures, and concentrations. The ZnO nanostructures were characterised by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results demonstrated that the synthesised products are crystalline with a zincite hexagonal phase. Various ZnO nanostructures, such as nanoparticles, microrods, and nanosheets, were produced by changing the experimental conditions. The photocatalytic degradation of methyl orange was also investigated using the ZnO nanoparticles thus prepared. These particles exhibited high performance in the photocatalytic degradation of MO and almost 100 % decolourisation occurred within only 20 min.


2019 ◽  
Vol 11 (12) ◽  
pp. 1764-1772 ◽  
Author(s):  
Ji-Bin An ◽  
Dai-Peng Hu ◽  
Yan-Lin Li ◽  
Na-Li Chen

The Magnetic photocatalytic cobalt ferrite/graphitic-carbon nitride (CoFe2O4/g-C3N4) composites with enhanced photocatalytic activity were successfully fabricated through a simple calcination method. Scanning electron microscopy, powder X-ray diffraction, and infrared spectroscopy were applied to characterize the samples. The photocatalytic behavior of CoFe2O4/g-C3N4 was assessed by degradation of atrazine in photo Fenton-like system under visible light irradiation. The results showed that CoFe2O4/g-C3N4 with 2.0 gL–1 catalyst loading in the presence of 1 mM peroxymonosulfate (PMS) exhibited the best catalytic performance, and more than 97% of atrazine was destructed in 12 min. This enhancement could be attributed to the synergistic effect between CoFe2O4 and g-C3N4 promoting longer lifetime of separated electron–hole pairs derived from the formation of the heterojunction between CoFe2O4 and g-C3N4. This could enhance the composite-mediated activation of PMS for the visible-light driven degradation of atrazine. Moreover, the quenching tests showed that sulfate radicals were responsible for the atrazine degradation. CoFe2O4/g-C3N4 composites have strong magnetic ability, thus their recovery from water could be readily achieved by applying external magnetic field. This study demonstrates reasonable performance of the PMS/CoFe2O4/g-C3N4 system in water matrix as potentially important candidate for environmental remediation.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Ming-Liang Chen ◽  
Won-Chun Oh

Multiwall carbon nanotube (MWCNT), vanadyl acetylacetonate (V(acac)3), and titaniumn-butoxide (TNB) were used as carbon, vanadium oxide, and titanium oxide precursor to prepare V2O3/CNT/TiO2composite. The obtained composite was characterized by BET surface area measurement, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray analysis. In addition, we used methylene blue (MB) solution under condition of visible light irradiation to determine their photocatalytic degradation efficiency. In conclusion, the V2O3/CNT/TiO2composite had excellent photocatalytic degradation for MB solution under visible light.


2021 ◽  
Author(s):  
Yu Fan ◽  
Yan-ning Yang ◽  
Chen Ding

Abstract The g-C3N4 nanosheet was prepared by calcination method, the MoS2 nanosheet was prepared by hydrothermal method. The g-C3N4/MoS2 composites were prepared by ultrasonic composite in anhydrous ethanol. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-Vis), and photoluminescence (PL) techniques were used to characterize the materials. The photocatalytic degradation of Rhodamine B (Rh B) by g-C3N4/MoS2 composites with different mass ratios was investigated under visible light. The results show that a small amount of MoS2 combined with g-C3N4 can significantly improve photocatalytic activity. The g-C3N4/MoS2 composite with a mass ratio of 1:8 has the highest photocatalytic activity, and the degradation rate of Rh B increases from 50% to 99.6%. The main reason is that MoS2 and g-C3N4 have a matching band structure. The separation rate of photogenerated electron-hole pairs is enhanced. So the g-C3N4/MoS2 composite can improve the photocatalytic activity. The photocatalytic mechanism was proposed through the active matter capture experiment.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shuo Xu ◽  
Xiaoya Gao ◽  
Wenfeng Xu ◽  
Pengfei Jin ◽  
Yongmei Kuang

A series of ultrathin BiOCl 2D nanosheet photocatalysts were prepared by the TBAOH-assisted hydrolysis method in water. The effects of tetrabutylammonium hydroxide (TBAOH) dosages, chlorine source, preparation pH value, ultrasonic treatment, and magnetic stirring on the photocatalytic degradation dynamics of carbamazepine were examined under visible-light irradiation to optimize the preparation parameters. It was found that ultrathin BiOCl prepared with TBAOH dosages of 1 mmol and chlorine source of NaCl in the pH of 2 upon magnetic stirring of 6 h displayed the highest photocatalytic degradation rate constant (0.0038 min−1) of carbamazepine, which is 7.6 times higher than that with the ordinary BiOCl (without TBAOH). To clarify the mechanism on the outstanding photocatalytic activity of ultrathin BiOCl, the elemental composition/state, micromorphology, and separation efficiency of photogenerated electron-hole pairs were investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and photoluminescence (PL). Results showed that the presence of oxygen vacancy, ultrathin nanosheet structure, and improved separation efficiency of photogenerated electron-hole pairs contributed to the excellent photocatalytic degradation activity of ultrathin BiOCl. The obtained result provides a novel method to fabricate ultrathin BiOCl with excellent photocatalytic degradation activity of carbamazepine under visible-light irradiation.


2014 ◽  
Vol 955-959 ◽  
pp. 120-126
Author(s):  
Ying Feng ◽  
Wei Huang ◽  
Chao Hao Hu ◽  
Wen Zhao ◽  
Pan Fei Jiao ◽  
...  

Ag-modified CaBiO2Cl photocatalysts were synthesized by the one-step solid state reaction method. The microstructure and morphology of catalysts were characterized by using X-ray diffraction, Scanning electron microscopy, and Energy dispersive X-ray detector (EDS) techniques. The photocatalytic activities of pure CaBiO2Cl and Ag-CaBiO2Cl catalysts were further evaluated by degrading methylene blue (MB) under visible-light irradiation. The measured UV-vis absorption spectra indicated that the degradation of Ag-modified CaBiO2Cl has been improved by about 12% in comparison with pure CaBiO2Cl. The enhanced photocatalytic activity in Ag-modified CaBiO2Cl can be ascribed to the better morphologies of the composites due to the Ag additive.


Sign in / Sign up

Export Citation Format

Share Document