Dodecanol and KH-592 Co-Modify Silica to Prepare Low Heat Build-Up and High Performance Natural Rubber Composites

NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050078
Author(s):  
Bo Yang ◽  
Dong An ◽  
Yaqing Liu ◽  
Shuaishuai Cheng ◽  
Zhiyi Zhang

Friction between filler/filler and filler/matrix in rubber composites is the main factor affecting the heat build-up. In this study, we used dodecanol and silane coupling agent KH-592 to co-modify silica to prepare silica/natural rubber (NR) composites. When dodecanol and KH-592 are grafted onto the surface of silica at the same time, dodecanol can also shield part of the hydroxyl groups by its molecular chain length, which further improves the dispersibility of silica particles. The silane coupling agent KH-592 can form a bridge structure between the silica and the NR matrix under the action of a mercapto group, and improve the interaction between the filler and the matrix. By controlling the use ratio of dodecanol and KH-592, the dispersion of the filler and the interaction between the filler and the matrix can be adjusted. Thereby, the friction between the filler/filler and the filler/matrix is reduced, and a low heat build-up rubber composite material is prepared. Through co-modification, we prepared a series of low-heat build-up silica/NR composites, where the minimum heat generation reached 13∘C. The co-modified silica/NR composite material not only meets the requirements of green tires, but also has low heat build-up characteristics, providing a new strategy for preparing green and energy-saving tires.

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2254
Author(s):  
Adeleke A. Oyekanmi ◽  
N. I. Saharudin ◽  
Che Mohamad Hazwan ◽  
Abdul Khalil H. P. S. ◽  
Niyi G. Olaiya ◽  
...  

Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films’ modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1928 ◽  
Author(s):  
Jingmeng Sun ◽  
Yao Pang ◽  
Yingni Yang ◽  
Junqi Zhao ◽  
Rongqi Xia ◽  
...  

Composites using agricultural and forestry residues as raw materials with potentially high-performance, multifunctional and biodegradable ecological advantages, are viewed as very promising for new-generation lightweight and low-cost bio-based sustainable building materials. At present, the research on wood-plastic composite materials is relatively mature. However, it is still a challenge to effectively use other biomass and improve the interface of the high-polymer compound system. Herein, we proposed a simple and effective method to enhance the interfacial adhesion properties of rice husk fibre and High Density Polyethylene (HDPE) composites by the silane coupling agent KH-550 and compatibilizer Maleic anhydride grafted polyethylene (MAPE) with complementary modification. It was found that the coupling agent KH-550 cross-linked with the hydroxyl group on the husk fibre surface and solidified with the high polymer by –NH–, –C=O– functional group generation. Compatibilizer MAPE strengthened the two phases by covalently bonding with an ester linkage and lowered the roughness of the cross-section of the composites. Meanwhile the modification enhanced the dispersibility, and mechanical properties of the husk-high polymer compound system, the bending and flexural strength were improved by 11.5% and 28.9% with KH-550, and MAPE added, respectively. The flexural strength of the composites increased by 40.7% after complementary modification. Furthermore, the complementary modification treatment reduced the hydrophilic hydroxyl groups and increased the molecular chain to improve the water-resistance, elastic modulus and toughness of the composite. This study prepared a bio-composite, which is expected to expand the use of agricultural and forestry residues as an extension of wood-plastic composites.


1999 ◽  
Vol 72 (2) ◽  
pp. 398-409 ◽  
Author(s):  
Ajay K. Manna ◽  
P. P. De ◽  
D. K. Tripathy ◽  
S. K. De ◽  
M. K. Chatterjee

Abstract Results of bound rubber determination, Monsanto rheometry, solvent swelling studies and measurement of physical properties reveal that high temperature molding of epoxidized natural rubber (ENR) filled with intermediate super abrasion furnace (ISAF) carbon black and surface oxidized ISAF carbon black, in the presence of silane coupling agent, namely, N-(4-vinylbenzyl)-N′-[3-(trimethoxysilyl)propyl]ethane-1,2-diamine monoHCl salt, results in crosslinking of the rubber phase, even in the absence of the vulcanizing agents. Infrared spectroscopic studies show formation of silyl ether, in the case of ISAF carbon black, whereas the oxidized grade forms both silyl ether as well as silyl ester and amide linkage. Oxidation of ISAF carbon black causes an increase in the extent of coupling bond formation.


2011 ◽  
Vol 236-238 ◽  
pp. 1467-1471 ◽  
Author(s):  
Ya Lan Liu ◽  
Shi Jie Shen ◽  
Li Zhang ◽  
Ling Min Shao

In this paper, two types of fiber surface treatment methods, namely heat treatment and chemical coupling, were used to improve the basalt fiber surface properties. The basalt fiber surface was heated under 250Celsius degree for 30minites, and then was treated by silane coupling agent ethanol solution with different concentrations. X-ray photoelectron spectroscopy (XPS) was utilized to study the surface chemical compositions of basalt fiber after treatments. The XPS analysis indicated that chemical bonds between basalt fiber and KH-550 have occurred, and silanols were adsorbed to the surface of basalt fibers by an ether linkage between the silanols and the hydroxyl groups of the fibers. When the concentration of KH-550 is 0.8wt%, the optimal bonding condition is formed between basalt fiber and silane coupling agent.


Sign in / Sign up

Export Citation Format

Share Document