Preparation of Copper and Nickel-Based Oxide Self-Supporting Electrode by Electrochemical Etching Method for the Detection of Glucose

NANO ◽  
2021 ◽  
pp. 2150072
Author(s):  
Naiyuan Cui ◽  
Sizhan Wang ◽  
Lu Wang

It is of great significance to prepare electrochemical glucose sensors with high selectivity and stability via effective and rapid methods. In this work, the self-support electrode with copper and nickel-based oxide is prepared by chemical-etching reaction which occurred under the property of electrochemical potential difference. In this processing, nickel foam is etched selectively by Cu[Formula: see text] ions and they not only act as self-supporting electrode substrate, but also as nickel ions precursor of NiO. Moreover, the reaction can be completely satisfied on 30 min at room temperature. As a self-supporting electrode nonenzymic glucose electrochemical sensor, the electrode exhibited a wide linear range (0.04–3.00[Formula: see text]mM), low detection limit (0.02[Formula: see text]mM) with high sensitivity of 1096[Formula: see text][Formula: see text] and good selectivity, repeatability and stability. Furthermore, the application of the prepared sensor provides an avenue for the application of the transition metal materials in the field of electrochemical sensing.

2021 ◽  
Author(s):  
Feng Gao ◽  
Xiaolong Tu ◽  
Yongfang Yu ◽  
Yansha Gao ◽  
Jin Zou ◽  
...  

Abstract Herein, an efficient electrochemical sensing platform is proposed for selective and sensitive detection of nitrite on the basis of Cu@C@Zeolitic imidazolate framework-8 (Cu@C@ZIF-8) heterostructure. Core-shell Cu@C@ZIF-8 composite was synthesized by pyrolysis of Cu-metal-organic framework@ZIF-8 (Cu-MOF@ZIF-8) in Ar atmosphere on account of the difference of thermal stability between Cu-MOF and ZIF-8. For the sensing system of Cu@C@ZIF-8, ZIF-8 with proper pore size allows nitrite diffuse through the shell, while big molecules cannot, which ensures high selectivity of the sensor. On the other hand, Cu@C as electrocatalyst promotes the oxidation of nitrite, thereby resulting high sensitivity of the sensor. Accordingly, the Cu@C@ZIF-8 based sensor presents excellent performance for nitrite detection, which achieves a wide linear response range of 0.1 µM to 300.0 µM, and a low limit of detection (LOD) of 0.033 µM. In addition, the Cu@C@ZIF-8 sensor possesses excellent stability and reproducibility, and was employed to quantify nitrite in sausage samples with recoveries of 95.45-104.80%.


2020 ◽  
Vol 44 (21) ◽  
pp. 8710-8717
Author(s):  
André L. D. Lima ◽  
Humberto V. Fajardo ◽  
André E. Nogueira ◽  
Márcio C. Pereira ◽  
Luiz C. A. Oliveira ◽  
...  

Nb-peroxo@iron oxides show high selectivity and activity in aniline conversion to azoxybenzene.


Author(s):  
Chong Xing ◽  
Dongcheng Xie ◽  
Haochen Zhang ◽  
Kang Song ◽  
Lei Yang ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 1811-1820
Author(s):  
Shuang Yan ◽  
Bin Luo ◽  
Jia He ◽  
Fang Lan ◽  
Yao Wu

Novel bimetallic metal–organic framework nanocomposites were fabricated by a facile yet efficient method. The as-prepared nanomaterial exhibited high sensitivity and high selectivity toward phosphopeptides and good reusability of five cycles for enriching phosphopeptides.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 641
Author(s):  
Yuan Zhai ◽  
Yi Xiang ◽  
Weiqing Yuan ◽  
Gang Chen ◽  
Jinliang Shi ◽  
...  

High sensitivity detection of terahertz waves can be achieved with a graphene nanomesh as grating to improve the coupling efficiency of the incident terahertz waves and using a graphene nanostructure energy gap to enhance the excitation of plasmon. Herein, the fabrication process of the FET THz detector based on the rectangular GNM (r-GNM) is designed, and the THz detector is developed, including the CVD growth and the wet-process transfer of high quality monolayer graphene films, preparation of r-GNM by electron-beam lithography and oxygen plasma etching, and the fabrication of the gate electrodes on the Si3N4 dielectric layer. The problem that the conductive metal is easy to peel off during the fabrication process of the GNM THz device is mainly discussed. The photoelectric performance of the detector was tested at room temperature. The experimental results show that the sensitivity of the detector is 2.5 A/W (@ 3 THz) at room temperature.


2021 ◽  
Vol 21 (10) ◽  
pp. 5143-5149
Author(s):  
Zhen Zhu ◽  
Wang-De Lin

This paper reports on a nanocomposite synthesized by sol–gel procedure comprising graphene sheets with hollow spheres of titanium dioxide (G/HS-TiO2) with varying weight percentages of graphene for the purpose of humidity sensors. The surface morphology of the nanocomposite was characterized using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The structural properties were examined using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The response to 12–80% RH at room temperature exhibited sensitivity (S = 135). However, the relative humidity range of 12–90% at room temperature exhibited higher sensitivity (S = 557). Sensors fabricated using the proposed nanocomposite exhibited high sensitivity to humidity, high stability, rapid response times, and rapid recovery times with hysteresis error of less than 1.79%. These results demonstrate the outstanding potential of his material for the monitoring of atmospheric humidity. This study also sought to elucidate the mechanisms underlying humidity sensing performance.


2021 ◽  
pp. 2101511
Author(s):  
Ziwei Chen ◽  
Haojie Guo ◽  
Fusheng Zhang ◽  
Xiaowen Li ◽  
Jiabing Yu ◽  
...  

ACS Sensors ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 3387-3397
Author(s):  
Haoxuan He ◽  
Chenxi Zhao ◽  
Jing Xu ◽  
Kuanzhi Qu ◽  
Zhen Jiang ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 75098-75104 ◽  
Author(s):  
Xinghua Chang ◽  
Mi Peng ◽  
Junfeng Yang ◽  
Teng Wang ◽  
Yu liu ◽  
...  

A light activated miniature formaldehyde sensor working at room temperature is fabricated by CdSO4 modified ZnO nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document