scholarly journals Post Quantum Secure Command and Control of Mobile Agents Inserting Quantum-Resistant Encryption Schemes in the Secure Robot Operating System

2021 ◽  
Vol 15 (03) ◽  
pp. 359-379
Author(s):  
Richa Varma ◽  
Chris Melville ◽  
Claudio Pinello ◽  
Tuhin Sahai

The secure command & control (C&C) of mobile agents arises in various settings including unmanned aerial vehicles, single pilot operations in commercial settings, and mobile robots to name a few. As more and more of these applications get integrated into aerospace and defense use cases, the security of the communication channel between the ground station and the mobile agent is of increasing importance. The development of quantum computing devices poses a unique threat to secure communications due to the vulnerability of asymmetric ciphers to Shor’s algorithm. Given the active development of new quantum resistant encryption techniques, we report the first integration of post-quantum secure encryption schemes with robotic operating system (ROS) and C&C of mobile agents, in general. We integrate these schemes in the application and network layers and study the performance of these methods by comparing them to present-day security schemes such as the widely used RSA algorithm.

Author(s):  
B. Muruganantham ◽  
P. Shamili ◽  
S. Ganesh Kumar ◽  
A. Murugan

Quantum cryptography is a method for accessing data with the cryptosystem more efficiently. The network security and the cryptography are the two major properties in securing the data in the communication network. The quantum cryptography uses the single photon passing through the polarization of a photon. In Quantum Cryptography, it's impossible for the eavesdropper to copy or modify the encrypted messages in the quantum states in which we are sending through the optical fiber channels. Cryptography performed by using the protocols BB84 and B92 protocols. The two basic algorithms of quantum cryptography are Shor’s algorithm and the Grover’s’s algorithm. For finding the number of integer factorization of each photon, Shor’s algorithm is used. Grover’s’s algorithm used for searching the unsorted data. Shor’s algorithm overcomes RSA algorithm by high security. By the implementation of quantum cryptography, we are securing the information from the eavesdropper and thereby preventing data in the communication channel.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sanghum Woo ◽  
Jongmin Lee ◽  
Hyunji Kim ◽  
Sungwoo Chun ◽  
Daehyung Lee ◽  
...  

Brain–computer interfaces can provide a new communication channel and control functions to people with restricted movements. Recent studies have indicated the effectiveness of brain–computer interface (BCI) applications. Various types of applications have been introduced so far in this field, but the number of those available to the public is still insufficient. Thus, there is a need to expand the usability and accessibility of BCI applications. In this study, we introduce a BCI application for users to experience a virtual world tour. This software was built on three open-source environments and is publicly available through the GitHub repository. For a usability test, 10 healthy subjects participated in an electroencephalography (EEG) experiment and evaluated the system through a questionnaire. As a result, all the participants successfully played the BCI application with 96.6% accuracy with 20 blinks from two sessions and gave opinions on its usability (e.g., controllability, completeness, comfort, and enjoyment) through the questionnaire. We believe that this open-source BCI world tour system can be used in both research and entertainment settings and hopefully contribute to open science in the BCI field.


2021 ◽  
pp. 447-456
Author(s):  
Beibei Sun

Agricultural mechanization has become the main mode of agricultural production and represents the development direction of modern agriculture. The amount of data generated in the agricultural production process is extremely huge, so it is necessary to introduce the concept and analysis method of big data. Combining agricultural robots with big data can improve the performance and application effect of robots. This paper combines big data, WLAN technology and robot technology to realize man-machine remote cooperation platform. This gives full play to the advantages that people are good at object recognition and robots are good at execution, and improves the fruit picking efficiency. The target fruit positioning and recognition system aided by machine vision is adopted to realize the accurate positioning of the fruit to be picked. Design of LFM control signal fitting based on big data clustering. In order to verify the feasibility of the scheme, taking the tomato picking robot as an example, the communication error and control accuracy using big data and WIFI (Wireless Fidelity) technology were tested, and the positioning and navigation efficiency with and without remote monitoring system was compared. Test results show that using big data and WIFI remote monitoring technology can effectively improve the efficiency and accuracy of positioning and navigation of remote operating system, which is of great significance for the design of automatic control system of picking robot.


2019 ◽  
Vol 1 (1) ◽  
pp. 90-93
Author(s):  
Tan Thanh Nguyen ◽  
Duy Khanh Nguyen

Robots imitating spider’s moving have many advantages such as flexible movement, high stability, diversity in movements performed, especially in terrain  crossing, in military reconnaissance, in surveying and collecting environmental data in dangerous areas,.... In this article  with the main objective is to exploit multiple control methods to support applications of a spider robot with low-cost, a spider robot with 6 legs and 18 joints was designed. The ESPWROOM-32 module (ESP32-D0WDQ6 chip) and MIT App Inventor were used as the main tools for conducting this research. As a result, the robot is controlled via Bluetooth and Wifi to move, making some actions by self-written software running on the Android operating system. In addition, the robot has the capacity of self-propelled to avoid simple obstacles and send some environmental parameters to the software, including obstacles distance, humidity and temperature.


2008 ◽  
Vol 25 (2) ◽  
pp. 227-238
Author(s):  
Seong-Kyun Jeong ◽  
Jae-Eun Lee ◽  
Han-Earl Park ◽  
Sang-Uk Lee ◽  
Jae-Hoon Kim

Author(s):  
Yi-Chang Wu ◽  
Huan-Chun Wang

Robots have been used in various areas to replace manpower, reduce costs, and facilitate more effective resource allocation. This study sought to assist the business of the bureau by developing two robots using the Robot Operating System. The developed robots have autonomous intelligent navigation functions and are suited to monitor the environment of <br /> the laboratories in the bureau. One robot had a temperature and humidity sensor and an infrared thermal camera, and it could be used to patrol and monitor the laboratory environment. The other robot had drawers in which specimens could be placed; robotic arm in the elevator could coordinate and control elevators, enabling the robot to move and transport specimens autonomously. Plenty of tests were conducted to verify the feasibility <br /> and practicality.


Author(s):  
Anton Pavlovich Teykhrib

<p>This article discusses a hybrid distributed environment including two levels of nodes: the first level which has high quality channels between the nodes, and the second one in which the nodes are directly involved in communication and the communication is performed through the first-level nodes. For the indicated distribution scheme, the questions of selection of the best path between the first-level nodes are solved based on such communication channel characteristics as delay in packet transmission, jitter in transmission, packet loss in transmission, and choosing a method for data transmission through the selected best path: protocols of transport and network layers have been compared, and the use of network layer has been preferred.</p>


1979 ◽  
Vol 23 (1) ◽  
pp. 70-74
Author(s):  
Daniel W. Dodson ◽  
Nicholas L. Shields

Individual Spacelab experimenters are responsible for developing their CRT display formats and interactive command scenarios for payload crew monitoring and control of experiment operations via the Spacelab Data Display System (DDS). In order to enhance crew training and flight operations, it was important to establish some standardization of the crew/experiment interface among different experiments by providing standard methods and techniques for data presentation and experiment commanding via the DDS. In order to establish optimum usage guidelines for the Spacelab DDS, the capabilities and limitations of the hardware and Experiment Computer Operating System design had to be considered. Since the operating system software and hardware ware design had already been established, the Display and Command Usage Guidelines were constrained to the capabilities of the existing system design. Empirical evaluations were conducted on a DDS simulator to determine optimum operator/system interface utilization of the system capabilities. Display parameters such as information location, display density, data organization, status presentation and dynamic update effects were evaluated in terms of response times and error rates.


Sign in / Sign up

Export Citation Format

Share Document