FoT-Rules: A Semantic Rule-based Approach for Smart Spaces Through Fog of Things

2021 ◽  
Vol 15 (01) ◽  
pp. 23-55
Author(s):  
Cleber Santana ◽  
Ernando Batista ◽  
Brenno Mello ◽  
Cassio Prazeres

Through the Internet of Things (IoT), Smart Spaces will enable environments to adapt according to users’ needs by using smart and connected objects. However, to turn the IoT view into a reality, the users should know about technical details of such objects, which is not a trivial task for most ordinary users. Therefore, this paper presents FoT-Rules, an approach for the construction of semantic rules aiming to create Smart Spaces through Fog of Things, which is a paradigm for Fog Computing in the IoT. FoT-Rules is designed to enable ordinary users to create and execute semantic rules in the Event-Condition-Action standard (ECA) and to take actions at the edge of the network. In this work, we present a scenario where the user can create semantic rules in the ECA standard and, in order to execute these rules at the network edge, FoT-Rules provides the following functionalities: creation of semantic rules; obtaining of the semantic models that contains information related to IoT devices; execution of a semantic reasoner over the semantic model according to the rule created by the user; a semantic observer that is responsible for observing changes in IoT devices; and in case the rule created by the user is activated, an action is taken for an IoT device. Finally, we performed four types of evaluations on our FoT-Rules approach: reliability, efficiency, scalability and usability.

Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4121 ◽  
Author(s):  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Fabio Massacci

Cybersecurity is one of the biggest challenges in the Internet of Things (IoT) domain, as well as one of its most embarrassing failures. As a matter of fact, nowadays IoT devices still exhibit various shortcomings. For example, they lack secure default configurations and sufficient security configurability. They also lack rich behavioural descriptions, failing to list provided and required services. To answer this problem, we envision a future where IoT devices carry behavioural contracts and Fog nodes store network policies. One requirement is that contract consistency must be easy to prove. Moreover, contracts must be easy to verify against network policies. In this paper, we propose to combine the security-by-contract (S × C) paradigm with Fog computing to secure IoT devices. Following our previous work, first we formally define the pillars of our proposal. Then, by means of a running case study, we show that we can model communication flows and prevent information leaks. Last, we show that our contribution enables a holistic approach to IoT security, and that it can also prevent unexpected chains of events.


2019 ◽  
Vol 20 (2) ◽  
pp. 365-376 ◽  
Author(s):  
Vivek Kumar Prasad ◽  
Madhuri D Bhavsar ◽  
Sudeep Tanwar

The evolution of the Internet of Things (IoT) has augmented the necessity for Cloud, edge and fog platforms. The chief benefit of cloud-based schemes is they allow data to be collected from numerous services and sites, which is reachable from any place of the world. The organizations will be benefited by merging the cloud platform with the on-site fog networks and edge devices and as result, this will increase the utilization of the IoT devices and end users too. The network traffic will reduce as data will be distributed and this will also improve the operational efficiency. The impact of monitoring in edge and fog computing can play an important role to efficiently utilize the resources available at these layers. This paper discusses various techniques involved for monitoring for edge and fog computing and its advantages. The paper ends with a case study to demonstarte the need of monitoring in fog and edge in the healthcare system.


Author(s):  
Francesca Rossi ◽  
Nicholas Mattei

The more AI agents are deployed in scenarios with possibly unexpected situations, the more they need to be flexible, adaptive, and creative in achieving the goal we have given them. Thus, a certain level of freedom to choose the best path to the goal is inherent in making AI robust and flexible enough. At the same time, however, the pervasive deployment of AI in our life, whether AI is autonomous or collaborating with humans, raises several ethical challenges. AI agents should be aware and follow appropriate ethical principles and should thus exhibit properties such as fairness or other virtues. These ethical principles should define the boundaries of AI’s freedom and creativity. However, it is still a challenge to understand how to specify and reason with ethical boundaries in AI agents and how to combine them appropriately with subjective preferences and goal specifications. Some initial attempts employ either a data-driven examplebased approach for both, or a symbolic rule-based approach for both. We envision a modular approach where any AI technique can be used for any of these essential ingredients in decision making or decision support systems, paired with a contextual approach to define their combination and relative weight. In a world where neither humans nor AI systems work in isolation, but are tightly interconnected, e.g., the Internet of Things, we also envision a compositional approach to building ethically bounded AI, where the ethical properties of each component can be fruitfully exploited to derive those of the overall system. In this paper we define and motivate the notion of ethically-bounded AI, we describe two concrete examples, and we outline some outstanding challenges.


Author(s):  
Ranjitha G. ◽  
Pankaj Lathar ◽  
G. M. Siddesh

Fog computing enhances cloud computing to be closer to the processes that act on IOT devices. Fogging was introduced to overcome the cloud computing paradigm which was not able to address some services, applications, and other limitations of cloud computing such as security aspects, bandwidth, and latency. Fog computing provides the direct correlation with the internet of things. IBM and CISCO are linking their concepts of internet of things with the help of fog computing. Application services are hosted on the network edge. It improves the efficiency and reduces the amount of data that is transferred to the cloud for analysis, storage, and processing. Developers write the fog application and deploy it to the access points. Several applications like smart cities, healthcare domain, pre-processing, and caching applications have to be deployed and managed properly.


Author(s):  
Flávia Pisani ◽  
Edson Borin

With the ever-growing scale of the IoT, transmitting a massive volume of sensor data through the network will be too taxing. However, it will be challenging to include resource-constrained IoT devices as processing nodes in the fog computing hierarchy. To allow the execution of custom code sent by users on these devices, which are too limited for many current tools, we developed a platform called LibMiletusCOISA (LMC). Moreover, we created two models where the user can choose a cost metric (e.g., energy consumption) and then use it to decide whether to execute their code on the cloud or on the device that collected the data. We employed these models to characterize different scenarios and simulate future situations where changes in the technology can impact this decision.


2022 ◽  
Vol 54 (7) ◽  
pp. 1-34
Author(s):  
Sophie Dramé-Maigné ◽  
Maryline Laurent ◽  
Laurent Castillo ◽  
Hervé Ganem

The Internet of Things is taking hold in our everyday life. Regrettably, the security of IoT devices is often being overlooked. Among the vast array of security issues plaguing the emerging IoT, we decide to focus on access control, as privacy, trust, and other security properties cannot be achieved without controlled access. This article classifies IoT access control solutions from the literature according to their architecture (e.g., centralized, hierarchical, federated, distributed) and examines the suitability of each one for access control purposes. Our analysis concludes that important properties such as auditability and revocation are missing from many proposals while hierarchical and federated architectures are neglected by the community. Finally, we provide an architecture-based taxonomy and future research directions: a focus on hybrid architectures, usability, flexibility, privacy, and revocation schemes in serverless authorization.


2017 ◽  
Vol 4 (5) ◽  
pp. 1113-1116 ◽  
Author(s):  
Rong N. Chang ◽  
Xiuzhen Cheng ◽  
Wei Cheng ◽  
Wonjun Lee ◽  
Yingshu Li ◽  
...  

2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


Sign in / Sign up

Export Citation Format

Share Document