A Nonautonomous Mathematical Model to Assess the Impact of Algae on the Abatement of Atmospheric Carbon Dioxide

Author(s):  
Pankaj Kumar Tiwari ◽  
Rajesh Kumar Singh ◽  
Debaldev Jana ◽  
Yun Kang ◽  
Arvind Kumar Misra
2005 ◽  
Vol 18 (13) ◽  
pp. 2222-2246 ◽  
Author(s):  
Robert J. Oglesby ◽  
Monica Y. Stephens ◽  
Barry Saltzman

Abstract A coupled mixed layer–atmospheric general circulation model has been used to evaluate the impact of ocean thermocline temperatures (and by proxy those of the deep ocean) on the surface climate of the earth. Particular attention has been devoted to temperature regimes both warmer and cooler than at present. The mixed layer ocean model (MLOM) simulates vertical dynamics and thermodynamics in the upper ocean, including wind mixing and buoyancy effects, and has been coupled to the NCAR Community Climate Model (CCM3). Simulations were made with globally uniform thermocline warmings of +2°, +5°, and +10°C, as well as a globally uniform cooling of −5°C. A simulation was made with latitudinally varying changes in thermocline temperature such that the warming at mid- and high latitudes is much larger than at low latitudes. In all simulations, the response of surface temperature over both land and ocean was larger than that expected just as a result of the imposed thermocline temperature change, largely because of water vapor feedbacks. In this respect, the simulations were similar to those in which only changes in atmospheric carbon dioxide were imposed. In fact, when carbon dioxide was explicitly changed along with thermocline temperatures, the results were not much different than if only the thermocline temperatures were altered. Land versus ocean differences are explained largely by latent heat flux differences: the ocean is an infinite evaporative source, while land can be quite dry. The latitudinally varying case has a much larger response at mid- to high latitudes than at low latitudes; the high latitudes actually appear to effectively warm the low latitudes. Simulations exploring scenarios of glacial inception suggest that the deep ocean alone is not likely to be a key trigger but must operate in conjunction with other forcings, such as reduced carbon dioxide. Moist upland regions at mid- and high latitudes, and land regions adjacent to perennial sea ice, are the preferred locations for glacial inception in these runs. Finally, the model combination equilibrates very rapidly, meaning that a large number of simulations can be made for a fairly modest computational cost. A drawback to this is greatly reduced sensitivity to parameters such as atmospheric carbon dioxide, which requires a full response of the ocean. Thus, this approach can be considered intermediate between fixing, or prescribing, sea surface temperatures and a fully coupled modeling approach.


2018 ◽  
Vol 18 (23) ◽  
pp. 17355-17370 ◽  
Author(s):  
Michael Buchwitz ◽  
Maximilian Reuter ◽  
Oliver Schneising ◽  
Stefan Noël ◽  
Bettina Gier ◽  
...  

Abstract. The growth rate of atmospheric carbon dioxide (CO2) reflects the net effect of emissions and uptake resulting from anthropogenic and natural carbon sources and sinks. Annual mean CO2 growth rates have been determined from satellite retrievals of column-averaged dry-air mole fractions of CO2, i.e. XCO2, for the years 2003 to 2016. The XCO2 growth rates agree with National Oceanic and Atmospheric Administration (NOAA) growth rates from CO2 surface observations within the uncertainty of the satellite-derived growth rates (mean difference ± standard deviation: 0.0±0.3 ppm year−1; R: 0.82). This new and independent data set confirms record-large growth rates of around 3 ppm year−1 in 2015 and 2016, which are attributed to the 2015–2016 El Niño. Based on a comparison of the satellite-derived growth rates with human CO2 emissions from fossil fuel combustion and with El Niño Southern Oscillation (ENSO) indices, we estimate by how much the impact of ENSO dominates the impact of fossil-fuel-burning-related emissions in explaining the variance of the atmospheric CO2 growth rate. Our analysis shows that the ENSO impact on CO2 growth rate variations dominates that of human emissions throughout the period 2003–2016 but in particular during the period 2010–2016 due to strong La Niña and El Niño events. Using the derived growth rates and their uncertainties, we estimate the probability that the impact of ENSO on the variability is larger than the impact of human emissions to be 63 % for the time period 2003–2016. If the time period is restricted to 2010–2016, this probability increases to 94 %.


2020 ◽  
Author(s):  
Tiehan Zhou ◽  
Kevin DallaSanta ◽  
Larissa Nazarenko ◽  
Gavin A. Schmidt

Abstract. Stratospheric radiative damping increases as atmospheric carbon dioxide concentration rises. We use the one-dimensional mechanistic models of the QBO to conduct sensitivity experiments and find that when atmospheric carbon dioxide concentration increases, the simulated QBO period shortens due to the enhancing of radiative damping in the stratosphere. This result suggests that increasing stratospheric radiative damping due to rising CO2 may play a role in determining the QBO period in a warming climate along with wave momentum flux entering the stratosphere and tropical vertical residual velocity, both of which also respond to increasing CO2.


2018 ◽  
Author(s):  
Julia Brugger ◽  
Matthias Hofmann ◽  
Stefan Petri ◽  
Georg Feulner

Abstract. During the Devonian period (419 to 359 million years ago), life on Earth witnessed decisive evolutionary break-throughs, most prominently the colonisation of land by vascular plants and vertebrates. At the same time, it is also a period of major marine extinction events coinciding with marked changes in climate. There is limited knowledge about the causes of these changes and their interactions. It is therefore instructive to explore systematically how the Devonian climate system responds to changes in critical boundary conditions. Here we use coupled climate-model simulations to investigate separately the influence of changes in orbital parameters, continental configuration and vegetation cover on the Devonian climate. Variations of Earth's orbital parameters affect the Devonian climate system, with the warmest climate states at high obliquity and high eccentricity, but the amplitude of global temperature differences is smaller than suggested by an earlier study based on an uncoupled atmosphere model. The prevailing mode of climate variability on decadal to centennial timescales relates to surface air temperature fluctuations in high northern latitudes which are mediated by coupled oscillations involving sea-ice cover, ocean convection and a regional overturning circulation in the Arctic. Furthermore, we find only a small biogeophysical effect of changes in vegetation cover on global climate during the Devonian, and the impact of changes in continental configuration is small as well. Assuming decreasing atmospheric carbon dioxide concentrations throughout the Devonian, we then set up model runs representing the Early, Middle and Late Devonian. Comparing the simulations for these timeslices, the temperature evolution is dominated by the strong decrease in atmospheric carbon dioxide. In particular, the albedo change due to the in- crease in land vegetation alone cannot explain the temperature rise found in Late Devonian proxy data which remains difficult to reconcile with reconstructed falling carbon-dioxide levels. Simulated temperatures are significantly lower than estimates based on oxygen-isotope ratios, suggesting a lower δ18O ratio of Devonian seawater.


2018 ◽  
Author(s):  
Michael Buchwitz ◽  
Maximilian Reuter ◽  
Oliver Schneising ◽  
Stefan Noël ◽  
Bettina Gier ◽  
...  

Abstract. The growth rate of atmospheric carbon dioxide (CO2) reflects the net effect of emissions and uptake resulting from anthropogenic and natural carbon sources and sinks. Annual mean CO2 growth rates have been determined globally and for selected latitude bands from satellite retrievals of column-average dry-air mole fractions of CO2, i.e., XCO2, for the years 2003 to 2016. The global XCO2 growth rates agree with National Oceanic and Atmospheric Administration (NOAA) growth rates from CO2 surface observations within the uncertainty of the satellite-derived growth rates (mean difference ± standard deviation: 0.0 ± 0.24 ppm/year; R: 0.87). This new and independent data set confirms record large growth rates around 3 ppm/year in 2015 and 2016, which are attributed to the 2015/2016 El Niño. Based on a comparison of the satellite-derived growth rates with human CO2 emissions from fossil fuel combustion and with El Niño Southern Oscillation (ENSO) indices, we estimate by how much the impact of ENSO dominates the impact of fossil fuel burning related emissions in explaining the variance of the atmospheric CO2 growth rate.


2020 ◽  
Vol 12 (22) ◽  
pp. 9397
Author(s):  
Yusri Yusup ◽  
Nur Kamila Ramli ◽  
John Stephen Kayode ◽  
Chee Su Yin ◽  
Sabiq Hisham ◽  
...  

We analyzed real-time measurements of atmospheric carbon dioxide (CO2), with total electricity production and nationwide restrictions phases in China, the United States of America, Europe, and India due to the novel coronavirus COVID-19 pandemic and its effects on atmospheric CO2. A decline of 3.7% in the global energy demand at about 150 million tonnes of oil equivalent (Mtoe) in the first quarter (Q1) of 2020 was recorded compared to Q1 2019 due to the cutback on international economic activities. Our results showed that: (1) electricity production for the same period in 2018, 2019, and 2020 shrunk at an offset of 9.20%, which resulted in a modest reduction (−1.79%) of atmospheric CO2 to the 2017–2018 CO2 level; (2) a non-seasonal, abrupt, and brief atmospheric CO2 decrease by 0.85% in mid-February 2020 could be due to Phase 1 restrictions in China. The results indicate that electricity production reduction is significant to the short-term variability of atmospheric CO2. It also highlights China’s significant contribution to atmospheric CO2, which suggests that, without the national restriction of activities, CO2 concentration is set to exceed 2019 by 1.79%. Due to the lockdown, it quickly decreased and sustained for two months. The results underscore atmospheric CO2 reductions on the monthly time scale that can be achieved if electricity production from combustible sources was slashed. The result could be useful for cost-benefit analyses on the decrease in electricity production of combustible sources and the impact of this reduction on atmospheric CO2.


Sign in / Sign up

Export Citation Format

Share Document