Facile synthesis of novel Roe-like TiO2 hollow nanospheres with mesoporous cavity for improved photocatalytic activity

2017 ◽  
Vol 10 (03) ◽  
pp. 1750028 ◽  
Author(s):  
Yan Zhu ◽  
Xiaoxia Yan ◽  
Yuanxin Ge ◽  
Shumin Wang ◽  
Dongmei Deng ◽  
...  

A facile approach was developed to synthesize novel Roe-like TiO2 hollow nanospheres via a template-assisted self-assembly process. These TiO2 nanospheres possessing mesoporous cavity manifest significantly improved photocatalytic activity owing to the synergistic effects of increased charge separation, more efficient use of the light and specific surface area.

RSC Advances ◽  
2019 ◽  
Vol 9 (66) ◽  
pp. 38414-38421 ◽  
Author(s):  
Sharafat Ali ◽  
Zhijun Li ◽  
Wajid Ali ◽  
Ziqing Zhang ◽  
Mingzhuo Wei ◽  
...  

Au decorated three-phase-mixed nanosized TiO2 coupled with phosphate-treated AC as recyclable nanocomposite photocatalysts exhibit excellent photoactivity for degrading high-concentration 2, 4-DCP, mainly due to the improved charge separation and specific surface area.


2014 ◽  
Vol 604 ◽  
pp. 93-101
Author(s):  
Maris Kodols ◽  
Sabine Didrihsone ◽  
Janis Grabis

The influence of glycine, glycerine, ethylene glycol and citric acid fuel and their ratio to NO3- on formation and dispersity of Bi2WO6 nanoparticles prepared by combustion synthesis has been studied. The pure crystalline Bi2WO6 with specific surface area 24,8 m2/g and crystallite size of 28 nm was obtained by using glycerine as fuel at its ratio to NO3- of 0,67. The photocatalytic activity of the prepared Bi2WO6 in degradation of methylene blue depended on its specific surface area of samples and solution pH.


2018 ◽  
Vol 6 (37) ◽  
pp. 18286-18292 ◽  
Author(s):  
Yaping Wang ◽  
Yifang Zhang ◽  
Junrong Shi ◽  
Anqiang Pan ◽  
Feng Jiang ◽  
...  

S-doped porous carbon confined SnS hollow nanospheres have a unique structure and large specific surface area and exhibit improved electrochemical performance.


2020 ◽  
Vol 998 ◽  
pp. 78-83
Author(s):  
Yi Yi Zaw ◽  
Du Ang Dao Channei ◽  
Thotsaphon Threrujirapapong ◽  
Wilawan Khanitchaidecha ◽  
Auppatham Nakaruk

Titanium dioxide (TiO2) is known as one of the widely used catalysts in photocatalysis process. Recently, the photocatalysis of TiO2 has been implied in water purification and treatment, particularly dyes and organic compounds degradations. Naturally, the TiO2 can be found in three phases including anatase, rutile and brookite; each phase has its own specific properties such as grain size, stability and band gap energy. In this work, the effect of calcination temperature on the structure, morphology and photocatalytic activity were investigated. The data suggested that the anatase/rutile ratio of TiO2 can be controlled through the calcination process. The phase transformation data strongly indicated the liner function between percentage of rutile phase and calcination temperature. The BET analysis provided the consistent data with XRD patterns by showing that the specific surface area was decreased by increasing calcination temperature. The photodegradation of methylene blue under UV irradiation proved that the mixed phase of anatase/rutile ratio at 78.5/21.5 provided the highest photocatalytic activity. The phase composition ratio can influence the nanoparticles properties including band gap, specific surface area and energy band structure. Therefore, the control of anatase/rutile ratio was an alternative to enhance the photocatalytic activity of TiO2 nanoparticles for dyes and organic compounds degradations.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Marina Maletić ◽  
Marija Vukčević ◽  
Ana Kalijadis ◽  
Zoran Laušević ◽  
Mila Laušević

The new and simple approach for deposition of catalytically active TiO2coating on carbon monolith (CM) carrier was presented. CM photocatalysts were impregnated with TiO2using titanium solution and thermal treatment, and their photocatalytic activity was investigated in the process of methylene blue (MB) photodegradation. For the purpose of comparison, CM composite photocatalysts were prepared by dip-coating method, which implies binder usage. The presence of TiO2on CM carrier was confirmed by Raman spectroscopy and scanning electron microscopy. The sorption characteristics of CM and the role of adsorption in the overall process of MB removal were evaluated through amount of surface oxygen groups obtained by temperature-programmed desorption and specific surface area determined by BET method. CM has shown good adsorption properties toward MB due to high amount of surface oxygen groups and relatively high specific surface area. It was concluded that photocatalytic activity increases with CM disc thickness due to increase of MB adsorption and amount of deposited TiO2. Good photocatalytic activity achieved for samples obtained by thermal treatment is the result of better accessibility of MB solution to the TiO2particles induced by binder absence.


2010 ◽  
Vol 129-131 ◽  
pp. 784-788 ◽  
Author(s):  
Min Wang ◽  
Qiong Liu ◽  
Dong Zhang

BiVO4/FeVO4 composite photocatalyst samples were prepared by calcining the mixture of FeVO4 and BiVO4 precusor which were prepared through liquid phase precipitation method for further increasing the photocatalytic efficiency of FeVO4. The catalysts were characterized by X-ray diffraction (XRD), scanning electron microsoope(SEM)and specific surface area (BET). The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange (MO) solution under visible light. The XRD patterns indicate that BiVO4/FeVO4 composite photocatalysts consist of triclinic phase and the lattice was not distorted beacause of doping Bi. But the morphology change greatly and the specific surface area has little change. In the experimental conditions used, the optimal photocatalytic activity for all the prepared samples was reached when BiVO4 doping was 22 at%. The degradation rate of MO was increased by 20% or so than that of pure FeVO4.


RSC Advances ◽  
2016 ◽  
Vol 6 (23) ◽  
pp. 18958-18964 ◽  
Author(s):  
Qianqian Ding ◽  
Yunxia Zhang ◽  
Guozhong Wang ◽  
Hongjian Zhou ◽  
Haimin Zhang

The hollow mesoporous TiO2–Au–TiO2 nanospheres with stability, large specific surface area can enhance visible-light-induced photocatalytic activity.


Sign in / Sign up

Export Citation Format

Share Document