Cr3+-doped Li3VO4 for enhanced Li+ storage

2019 ◽  
Vol 13 (02) ◽  
pp. 2050005
Author(s):  
Guisheng Liang ◽  
Xingxing Jin ◽  
Cihui Huang ◽  
Lijie Luo ◽  
Yongjun Chen ◽  
...  

Li3VO4 has gained significant attention as a promising anode material for lithium-ion batteries owing to its high specific capacity, low cost and safe working potential. Unfortunately, its disappointing electronic conductivity limits its rate performance. To address this problem, a series of Cr[Formula: see text]-doped Li3VO4 compounds are synthesized by solid-state reaction. The obtained Li[Formula: see text]Cr[Formula: see text]V[Formula: see text]O4 compounds ([Formula: see text] and 0.02) have the same orthorhombic crystal structure (Pnm21 space group), suggesting the successful Cr[Formula: see text] doping in Li3VO4. Compared with Li3VO4, Li[Formula: see text]Cr[Formula: see text]V[Formula: see text]O4 exhibits a two orders of magnitude larger electronic conductivity. Additional benefits of the Cr[Formula: see text] doping include the increase of the Li[Formula: see text] diffusion coefficient and the decrease of the particle size. Consequently, Li[Formula: see text]Cr[Formula: see text]V[Formula: see text]O4 displays not only a large reversible capacity (363[Formula: see text]mAh g[Formula: see text] at 60[Formula: see text]mA g[Formula: see text] and superior cyclic stability (86.6% capacity retention after 1000 cycles at 1200[Formula: see text]mA g[Formula: see text] but also decent rate performance (147[Formula: see text]mAh g[Formula: see text] at 1200[Formula: see text]mA g[Formula: see text].

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingmeng Zhang ◽  
Henan Li ◽  
Shaozhuan Huang ◽  
Shuang Fan ◽  
Lingna Sun ◽  
...  

AbstractMgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc. Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are investigated. The batteries measured in the 1 M ZnSO4−1 M MgSO4 electrolyte outplay other competitors, which deliver a high specific capacity of 374 mAh g−1 at a current density of 100 mA g−1 and exhibit a competitive rate performance with the reversible capacity of 175 mAh g−1 at 5 A g−1. This study provides a promising route to improve the performance of vanadium-based cathodes for aqueous zinc-ion batteries with electrolyte optimization in cost-effective electrolytes.


2015 ◽  
Vol 3 (16) ◽  
pp. 8683-8692 ◽  
Author(s):  
Lingyun Guo ◽  
Qiang Ru ◽  
Xiong Song ◽  
Shejun Hu ◽  
Yudi Mo

The as-prepared pineapple-shaped ZCO with a porous nanostructure shows a high specific capacity, superior rate capability and excellent cycling stability when used as an anode material for LIBs.


2020 ◽  
Vol 15 (2) ◽  
pp. 204-211
Author(s):  
Peng Peng ◽  
Jiewei Chen ◽  
Kai Niu ◽  
Zhuohai Liu ◽  
Hao Huang ◽  
...  

A novel strategy for structural design of current-collector-free lithium ion batteries (LIBs) has been proposed, MoO3/CNTs loading on the single side of a separator by a simple spin-coating method. LIBs with such a MoO3-based composite separator eliminate the need for metal current collectors and exhibit an extra high specific capacity (0.2C, ∼1200 mA h g–1). Faster ion transport and lower charge transfer resistance (Rct) of the composite separator were proved compared with the traditional MoO3-based electrode, which results in the increased special capacity. In addition, the pseudocapacitive effect caused by vacancies and narrow interval in the MoO3/CNTs materials also contributes to the high specific capacity of the batteries. The highly efficient ion and electron transport ability of the composite separator were proved in this study, and such a novel design strategy would be an alternative for low-cost LIBs.


2017 ◽  
Vol 5 (35) ◽  
pp. 18698-18706 ◽  
Author(s):  
Tong Yu ◽  
Shoutao Zhang ◽  
Fei Li ◽  
Ziyuan Zhao ◽  
Lulu Liu ◽  
...  

Two dimensional TaC2is a promising anode material from the standpoint of a high specific capacity, fast Li diffusion rate, low operating voltage, and good electronic conductivity.


RSC Advances ◽  
2015 ◽  
Vol 5 (113) ◽  
pp. 93048-93056 ◽  
Author(s):  
Mohammed Adnan Mezaal ◽  
Limin Qu ◽  
Guanghua Li ◽  
Rui Zhang ◽  
Jiang Xuejiao ◽  
...  

Nickel-rich layered lithium transition-metal oxides have been studied intensively as high-energy positive-electrode materials for lithium batteries because of their high specific capacity and relatively low-cost.


2012 ◽  
Vol 15 (2) ◽  
pp. 71-74
Author(s):  
Bing Huang ◽  
Xiaodong Zheng ◽  
Mi Lu ◽  
Yiming Zhou ◽  
Yu Chen ◽  
...  

The spherical LiFePO4/C nanoparticles are synthesized by modified carbothermal reduction method. XRD patterns show that the LiFePO4 compound is orthorhombic crystal structure. SEM and TEM results indicate that the LiFePO4 composite had a spherical morphology with carbon coated and the particle size is nanoscale. Charge/discharge tests and CV curves show that as-prepared sample exhibits discharge capacity of 153 mAh g-1 at 0.2 C rate with high electrode reaction reversibility. The discharge capacities of the material are 150, 132, 119, 111, 103 and 96 mAh g-1 at 1 C, 5 C, 10 C, 15 C, 20 C and 25 C rate and high voltage plateaus are achieved. The good rate performance of the composite is due to its nano particle size and spherical morphology, which reduced the diffusion path of lithium ions and electrons, increased the conductive specific surface and improved the processability of the LiFePO4 cathode.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Shibin Liu ◽  
Jianwei Xu ◽  
Hongyu Zhou ◽  
Jing Wang ◽  
Xiangcai Meng

B doping plays an important role in improving the conductivity and electrochemical properties of Si anodes for Li-ion batteries. Herein, we developed a facile and massive production strategy to fabricate C-coated B-doped Si (B-Si@C) nanorod anodes using casting intermediate alloys of Al-Si and Al-B and dealloying followed by C coating. The B-Si@C nanorod anodes demonstrate a high specific capacity of 560 mAg-1, with a high initial coulombic efficiency of 90.6% and substantial cycling stability. Notably, the melting cast approach is facile, simple, and applicable to doping treatments, opening new possibilities for the development of low-cost, environmentally benign, and high-performance Li-ion batteries.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhongxiang Guan ◽  
Zhiping Guan ◽  
Zhigang Li ◽  
Junhui Liu ◽  
Kaifeng Yu

Abstract As a biomass waste, hemp stems have the advantages of low cost and abundance, and it is regarded as a promising anode material with a high specific capacity. In this paper, activated carbon derived from hemp stems is prepared by low-temperature carbonization and high-temperature activation. The results of characterizations show the activated carbon has more pores due to the advantages of natural porous structure of hemp stem. The aperture size is mainly microporous, and there are mesopores and macropores in the porous carbon. The porous carbon has an excellent reversible capacity of 495 mAh/g after 100 cycles at 0.2 °C as the anode of lithium-ion battery. Compared with the graphite electrode, the electrochemical property of activated carbon is significantly improved due to the reasonable distribution of pore size. The preparation of the activated carbon provides a new idea for low cost and rapid preparation of anode materials for high capacity lithium-ion batteries.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3992
Author(s):  
Jinshan Mo ◽  
Dongmei Zhang ◽  
Mingzhe Sun ◽  
Lehao Liu ◽  
Weihao Hu ◽  
...  

Nickel cobalt manganese ternary cathode materials are some of the most promising cathode materials in lithium-ion batteries, due to their high specific capacity, low cost, etc. However, they do have a few disadvantages, such as an unstable cycle performance and a poor rate performance. In this work, polyethylene oxide (PEO) with high ionic conductance and flexibility was utilized as a multifunctional binder to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Scanning electron microscopy showed that the addition of PEO can greatly improve the adhesion of the electrode components and simultaneously enhance the integrity of the electrode. Thus, the PEO-based electrode (20 wt% PEO in PEO/PVDF) shows a high electronic conductivity of 19.8 S/cm, which is around 15,000 times that of the pristine PVDF-based electrode. Moreover, the PEO-based electrode exhibits better cycling stability and rate performance, i.e., the capacity increases from 131.1 mAh/g to 147.3 mAh/g at 2 C with 20 wt% PEO addition. Electrochemical impedance measurements further indicate that the addition of the PEO binder can reduce the electrode resistance and protect the LiNi0.6Co0.2Mn0.2O2 cathode materials from the liquid electrolyte attack. This work offers a simple yet effective method to improve the cycling performance of the ternary cathode materials by adding an appropriate amount of PEO as a binder in the electrode fabrication process.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lipeng Xu ◽  
Fei Zhou ◽  
Bing Liu ◽  
Haobing Zhou ◽  
Qichang Zhang ◽  
...  

Due to the advantages of high specific capacity, various temperatures, and low cost, layered LiNi0.6Co0.2Mn0.2O2 has become one of the potential cathode materials for lithium-ion battery. However, its application was limited by the high cation mixing degree and poor electric conductivity. In this paper, the influences of synthesis methods and modification such surface coating and doping materials on the electrochemical properties such as capacity, cycle stability, rate capability, and impedance of LiNi0.6Co0.2Mn0.2O2 cathode materials are reviewed and discussed. The confronting issues of LiNi0.6Co0.2Mn0.2O2 cathode materials have been pointed out, and the future development of its application is also prospected.


Sign in / Sign up

Export Citation Format

Share Document