Synthesis of Cu2(OH)PO4 superstructures with NIR-laser enhanced photocatalytic activity

2020 ◽  
Vol 13 (03) ◽  
pp. 2050015 ◽  
Author(s):  
Lu Cheng ◽  
Nuo Yu ◽  
Yan Zhang ◽  
Zhun Shi ◽  
Haifeng Wang ◽  
...  

The development of photocatalysts with wide UV-Vis-near-infrared (NIR) photoabsorption has received tremendous interest for utilizing sunlight efficiently. In this work, Cu2(OH)PO4 superstructures are prepared by a simple hydrothermal route, and they have strong bandgap absorption in UV-Visible region and a distinctive plasmon resonance absorption in NIR region. Under the synergetic illumination of visible light and 980[Formula: see text]nm laser (3.0[Formula: see text]W[Formula: see text]cm[Formula: see text]), Cu2(OH)PO4 superstructures can degrade 89.2% MB with the elevated temperature ([Formula: see text]51∘C) of solution, which is higher than that from visible light group (50.0%), laser group (16.4%), and visible-light/exterior-heating group (62.5%, same temperature at [Formula: see text]51.0∘C). These facts reveal that Cu2(OH)PO4 superstructures exhibit NIR-laser enhanced photocatalytic activity, which not only comes from the photothermal effect-induced temperature elevation, but also mainly results from the increased production of photogenerated electron-hole pairs by NIR-laser. Therefore, Cu2(OH)PO4 superstructures can act as efficient photocatalyst with NIR-laser enhanced photocatalytic activity.

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2206
Author(s):  
Gaoqian Yuan ◽  
Gen Zhang ◽  
Kezhuo Li ◽  
Faliang Li ◽  
Yunbo Cao ◽  
...  

Loading a noble metal on Bi4Ti3O12 could enable the formation of the Schottky barrier at the interface between the former and the latter, which causes electrons to be trapped and inhibits the recombination of photoelectrons and photoholes. In this paper, AgPt/Bi4Ti3O12 composite photocatalysts were prepared using the photoreduction method, and the effects of the type and content of noble metal on the photocatalytic performance of the catalysts were investigated. The photocatalytic degradation of rhodamine B (RhB) showed that the loading of AgPt bimetallic nanoparticles significantly improved the catalytic performance of Bi4Ti3O12. When 0.10 wt% noble metal was loaded, the degradation rate for RhB of Ag0.7Pt0.3/Bi4Ti3O12 was 0.027 min−1, which was respectively about 2, 1.7 and 3.7 times as that of Ag/Bi4Ti3O12, Pt/Bi3Ti4O12 and Bi4Ti3O12. The reasons may be attributed as follows: (i) the utilization of visible light was enhanced due to the surface plasmon resonance effect of Ag and Pt in the visible region; (ii) Ag nanoparticles mainly acted as electron acceptors to restrain the recombination of photogenerated electron-hole pairs under visible light irradiation; and (iii) Pt nanoparticles acted as electron cocatalysts to further suppress the recombination of photogenerated electron-hole pairs. The photocatalytic performance of Ag0.7Pt0.3/Bi4Ti3O12 was superior to that of Ag/Bi4Ti3O12 and Pt/Bi3Ti4O12 owing to the synergistic effect between Ag and Pt nanoparticles.


RSC Advances ◽  
2015 ◽  
Vol 5 (115) ◽  
pp. 94887-94894 ◽  
Author(s):  
Meng Wang ◽  
Ziyu Qiao ◽  
Minghao Fang ◽  
Zhaohui Huang ◽  
Yan'gai Liu ◽  
...  

1.5% Bi2WO6:Er3+ exhibited highest photocatalytic activity as the separation efficiency of the photogenerated electron–hole pairs is enhanced.


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 66 ◽  
Author(s):  
Xinxin Zhao ◽  
Hua Yang ◽  
Ziming Cui ◽  
Xiangxian Wang ◽  
Zao Yi

Bi4Ti3O12 square plates were synthesized via a hydrothermal route, and their growth process was systematically investigated. Carbon quantum dots (CQDs) were prepared using glucose as the carbon source, which were then assembled on the surface of Bi4Ti3O12 square plates via a hydrothermal route with the aim of enhancing the photocatalytic performance. XRD (X-ray powder diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), UV-vis DRS (diffuse reflectance spectroscopy), XPS (X-ray photoelectron spectroscopy), FTIR (Fourier transform infrared spectroscopy), PL (photoluminescence) spectroscopy, EIS (electrochemical impedance spectroscopy) and photocurrent spectroscopy were used to systematically characterize the as-prepared samples. It is demonstrated that the decoration of CQDs on Bi4Ti3O12 plates leads to an increased visible light absorption, slightly increased bandgap, increased photocurrent density, decreased charge-transfer resistance, and decreased PL intensity. Simulated sunlight and visible light were separately used as a light source to evaluate the photocatalytic activity of the samples toward the degradation of RhB in aqueous solution. Under both simulated sunlight and visible light irradiation, CQDs@Bi4Ti3O12 composites with an appropriate amount of CQDs exhibit obviously enhanced photocatalytic performance. However, the decoration of excessive CQDs gives rise to a decrease in the photocatalytic activity. The enhanced photocatalytic activity of CQDs-modified Bi4Ti3O12 can be attributed to the following reasons: (1) The electron transfer between Bi4Ti3O12 and CQDs promotes an efficient separation of photogenerated electron/hole pairs in Bi4Ti3O12; (2) the up-conversion photoluminescence emitted from CQDs could induce the generation of additional electron/hole pairs in Bi4Ti3O12; and (3) the photoexcited electrons in CQDs could participate in the photocatalytic reactions.


NANO ◽  
2020 ◽  
Vol 15 (04) ◽  
pp. 2050045
Author(s):  
Ning Liu ◽  
Huidong Xie ◽  
Jie Li ◽  
Yajuan Zhao ◽  
Na Wang

Brookite TiO2 was synthesized by a hydrothermal method, g-C3N4 was prepared by a pyrolytic method, brookite/g-C3N4 composites were prepared by a calcining method, and brookite/g-C3N4/BiOBr ternary composites were prepared by loading BiOBr on the surface of brookite/g-C3N4. XRD and XPS analysis of the composites confirmed the formation of brookite TiO2/g-C3N4/BiOBr. SEM and TEM results confirmed the as-prepared composites were nanosized. The optimum loading amount of BiOBr was 30%. The photocatalytic results showed that the brookite/g-C3N4/30%BiOBr composites degraded rhodamine B completely under visible light irradiation. The degradation ratio of brookite/g-C3N4/30%BiOBr toward rhodamine B was nearly 100% for 2[Formula: see text]h, which was much higher than that of brookite TiO2 and brookite/g-C3N4 catalysts. The reason for the improvement of photocatalytic activity might be because the composites promoted the formation of superoxide radicals and the separation efficiency of photogenerated electron-hole pairs. The photocurrent density of the brookite/g-C3N4/30%BiOBr was about 10 times higher than that of pure brookite. In addition, the brookite/g-C3N4/BiOBr showed a good repeatablity of photocatalysis.


RSC Advances ◽  
2015 ◽  
Vol 5 (53) ◽  
pp. 42736-42743 ◽  
Author(s):  
Qian Zhang ◽  
Haoying Wang ◽  
Shaozheng Hu ◽  
Guang Lu ◽  
Jin Bai ◽  
...  

A g-C3N4/Bi2O2CO3 layered heterojunction nanocomposite exhibits more effective separation of photogenerated electron–hole pairs and a stable chemical structure, thus showing higher photocatalytic activity and stability.


2017 ◽  
Vol 41 (8) ◽  
pp. 475-483 ◽  
Author(s):  
C. Chen ◽  
X. F. Lei ◽  
M. Z. Xue

Pure anatase TiO2 photocatalysts with different Ag contents were prepared via a simple sol-gel method. The as-prepared anatase Ag-doped TiO2 photocatalysts were characterised by X-ray diffraction, transmission electron microscopy, UV-Vis diffuse reflectance spectra, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, thermal gravity and differential thermal analysis, scanning electron microscopy and N2 adsorption–desorption measurements (BET). Compared with pure TiO2, Ag-doped anatase TiO2 photocatalysts exhibited not only increases in light absorption in the visible region, the separation efficiency of electron–hole pairs and surface area, but also inhibition of the titania phase transition from anatase to rutile. Photoreduction results showed that Ag-doped anatase TiO2 photocatalysts have greatly improved photocatalytic activity, compared with pure TiO2, and the reduction of Cr(VI) under visible light irradiation was much higher than that of pure TiO2. The optimum Ag content was 1.0 mol%, which led to the complete reduction of Cr(VI) under visible light irradiation (λ > 420 nm) for 4 h. The enhanced photocatalytic activity was attributed to the synergic effect of the pure anatase structure, and the increased light absorption in the visible region, separation efficiency of electron–hole pairs and atomic ratio of Ag0:Ag2O.


2015 ◽  
Vol 3 (8) ◽  
pp. 4652-4658 ◽  
Author(s):  
Zhihong Chen ◽  
Fan Bing ◽  
Qiong Liu ◽  
Zhengguo Zhang ◽  
Xiaoming Fang

The excellent photocatalytic activity of Ag3PO4/Ag/SiC can be ascribed to the efficient separation of photogenerated electron–hole pairs through the Z-scheme.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 40028-40033 ◽  
Author(s):  
Hao Xu ◽  
Zhixing Gan ◽  
Weiping Zhou ◽  
Zuoming Ding ◽  
Xiaowei Zhang

Insufficient visible light absorption and fast recombination of the photogenerated electron–hole pairs have seriously hampered the photocatalytic performance of graphitic carbon nitride (g-C3N4) up to now.


NANO ◽  
2019 ◽  
Vol 14 (09) ◽  
pp. 1950111
Author(s):  
Hongjin Liu ◽  
Yu Wang ◽  
Jun Lv ◽  
Guangqing Xu ◽  
Xinyi Zhang ◽  
...  

Based on U-g-C3N4 (U-gCN) and T-g-C3N4 (T-gCN) prepared with urea and thiourea as raw materials, respectively, a visible-light-driven MoS2-modified U-gCN/T-gCN/MoS2 (UTM) ternary heterojunction photocatalyst was successfully prepared using a sonication and bathing method. The photocatalytic activity of as-prepared photocatalyst was evaluated through the degradation of tetracycline hydrochloride (TC) and Rhodamine B (RhB) under the visible light irradiation. The UTM ternary heterojunction showed remarkably enhanced photocatalytic activity. For the degradation of TC and RhB, the degradation rates of 93.9% and 99.9% have been achieved after being irradiated under visible light for 2[Formula: see text]h and 1[Formula: see text]h, respectively. The enhanced photocatalytic performance can be ascribed to the role of loaded MoS2 cocatalyst and the well-formed interfaces between U-gCN and T-gCN, which not only enhance the light absorption, but also accelerate the separation and transfer of photogenerated electron–hole pairs. Furthermore, UTM ternary heterojunction has excellent recyclability and chemical stability. The photodegradation rates of 89.9% and 96.78% of TC and RhB have been obtained, respectively, after being reused for five times. Sacrificial agent tests demonstrate that [Formula: see text][Formula: see text] is the major reactive species in the photocatalytic reaction system.


2019 ◽  
Vol 54 (3) ◽  
pp. 257-264
Author(s):  
Jin Xu ◽  
Dasheng Gao ◽  
Shuang Cui ◽  
Xiaohua Wang ◽  
Ningning Liu

Abstract Through a simple grinding method, AgI/TiO2 composites were successfully synthesized. The as-prepared AgI/TiO2 composites were used as photocatalysts for Rhodamine B (RhB) degradation under visible light irradiation and exhibited excellent photocatalytic performance. In the presence of composites, almost 100% RhB was decomposed after 60 min. The photocatalytic activity of AgI/TiO2-0.5 composite was optimal, which was 9.5 times higher than that of pristine TiO2, and 15.6 times higher than that of AgI. Moreover, experimental results revealed that the improved photocatalytic activity was not only ascribed to the loading AgI but also resulted from the method that enabled the exposure of more active sites in the composites. In addition, the intimate interfacial contact obtained by this method could also promote the efficient separation of photogenerated electron-hole pairs. Moreover, the possible photocatalytic active species and the stability of the photocatalyst were investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document