LAND-USE CHANGE AND GREENHOUSE GAS EMISSIONS IN THE FAPRI-CARD MODEL SYSTEM: ADDRESSING BIAS AND UNCERTAINTY

2012 ◽  
Vol 03 (03) ◽  
pp. 1250014 ◽  
Author(s):  
AMANI E. ELOBEID ◽  
MIGUEL A. CARRIQUIRY ◽  
JACINTO F. FABIOSA

Even with a normalized and standardized biofuel shock, the wide range of land-use change estimates and their associated greenhouse gas (GHG) emissions have raised concern on the adequacy of existing agricultural models in this new area of analysis. In particular, reducing bias and improving precision of impact estimates are of primary concern to policy makers. This paper provides a detailed overview of the FAPRI-CARD agricultural modeling system, with particular emphasis on the modifications recently introduced to reduce bias in the results. We illustrate the impact of these new model features using the example of the new yield specification that now includes updated trend parameter, intensification and extensification effects, and a spatially disaggregated Brazil specification. The paper also provides a taxonomy of the many types of uncertainty surrounding any analysis, including parameter-coefficient uncertainty and exogenous variable uncertainty, identifying where specific types of uncertainty originate, and how they interact. Finally, FAPRI-CARD's long experience in using stochastic analysis is presented as a viable approach in addressing uncertainty in the analysis of changes in the agricultural sector, associated land-use change, and impacts on GHG emissions.

2011 ◽  
Vol 1 (2) ◽  
pp. 224-232 ◽  
Author(s):  
Andre M. Nassar ◽  
Leila Harfuch ◽  
Luciane C. Bachion ◽  
Marcelo R. Moreira

The use of agricultural-based biofuels has expanded. Discussions on how to assess green house gas (GHG) emissions from biofuel policies, specifically on (non-observed) land-use change (LUC) effects involve two main topics: (i) the limitations on the existing methodologies, and (ii) how to isolate the effects of biofuels. This paper discusses the main methodologies currently used by policy-makers to take decisions on how to quantify LUCs owing to biofuel production expansion. It is our opinion that the concerns regarding GHG emissions associated with LUCs should focus on the agricultural sector as a whole rather than concentrating on biofuel production. Actually, there are several limitations of economic models and deterministic methodologies for simulating and explaining LUCs resulting from the expansion of the agricultural sector. However, it is equally true that there are avenues of possibilities to improve models and make them more accurate and precise in order to be used for policy-making. Models available need several improvements to reach perfection. Any top model requires a concentration of interdisciplinary designers in order to replicate empirical evidence and capture correctly the agricultural sector dynamics for different countries and regions. Forgetting those limitations means that models will be used for the wrong purposes.


2021 ◽  
Author(s):  
Amulya Gurtu

Reducing supply chain costs is a primary concern of every organization. Organizations have implemented offshore outsourcing as an effective strategy towards reducing supply chain costs. However, neither government nor corporate organizations have sufficiently taken into account the effects of this strategy on global greenhouse gas (GHG) emissions. The purpose of this research is to analyze the impact of offshore outsourcing on global GHG emissions, and the effect of changes in fuel prices in addition to a carbon price on additional emissions on supply chain costs. The purpose is supported by five key objectives. The objectives are addressed through a systematic methodology. The analysis is supported by a literature review, and the development and testing of mathematical models. Finally, a framework to reduce global GHG emissions through a carbon price on differential emissions from manufacturing and additional emissions from international transportation is proposed. The findings suggest that offshore outsourcing has increased global emissions. The fuel prices are increasing at a rate higher than the overall rate. A carbon price on excess emissions due to outsourcing coupled with increasing fuel prices impacts supply chain costs adversely and leads to bigger lot-sizes. As an illustration at the national level, the framework showed that emissions for the USA increased by about 20% for every year between 2007 and 2010. As another example from a corporate organization, the net profit (profit after tax) for Wal-Mart was reduced by about 19% for 2006 due to a carbon price on manufacturing emissions alone. The suggested framework is a major contribution for quantifying the extent of changes in the emissions due to offshore outsourcing and the value of these emissions at a prevailing rate of carbon tax in North America. It is intended to provide a basis for reducing emissions and costs from global supply chains. The proposed framework provides a level playing field to manufacturers in different countries using different technologies, provides incentives to organizations for manufacturing in locations where net emissions are low, helps national governments determine how they can generate revenue for dealing with emissions, and, most importantly, aids in reducing overall global GHG emissions.


2019 ◽  
Author(s):  
Sheila Wachiye ◽  
Lutz Merbold ◽  
Timo Vesala ◽  
Janne Rinne ◽  
Matti Räsänen ◽  
...  

Abstract. For effective climate change mitigation strategies, adequate data on greenhouse gas (GHG) emissions from a wide range of land-use and land cover types area prerequisite. However, GHG field measurement data are still scarce for many land-use types in Africa, causing a high uncertainty in GHG budgets. To address this knowledge gap, we present in situ measurements of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) emissions in the lowland part of southern Kenya. We conducted chamber measurements on gas exchange from four dominant land-use types (LUTs) and included (1) cropland, (2) grazed savanna, (3) bushland, and (4) conservation land. Between 29 November 2017 to 3 November 2018, eight measurement campaigns were conducted accounting for regional seasonality (including wet and dry seasons and transitions periods) in each LUT. Mean CO2 emissions for the whole observation period were significantly higher (p-value 


2021 ◽  
Vol 14 (9) ◽  
pp. 5695-5730
Author(s):  
Annika Günther ◽  
Johannes Gütschow ◽  
Mairi Louise Jeffery

Abstract. Parties to the Paris Agreement (PA, 2015) outline their planned contributions towards achieving the PA temperature goal to “hold […] the increase in the global average temperature to well below 2 ∘C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 ∘C” (Article 2.1.a, PA) in their nationally determined contributions (NDCs). Most NDCs include targets to mitigate national greenhouse gas (GHG) emissions, which need quantifications to assess i.a. whether the current NDCs collectively put us on track to reach the PA temperature goals or the gap in ambition to do so. We implemented the new open-source tool “NDCmitiQ” to quantify GHG mitigation targets defined in the NDCs for all countries with quantifiable targets on a disaggregated level and to create corresponding national and global emissions pathways. In light of the 5-year update cycle of NDCs and the global stocktake, the quantification of NDCs is an ongoing task for which NDCmitiQ can be used, as calculations can easily be updated upon submission of new NDCs. In this paper, we describe the methodologies behind NDCmitiQ and quantification challenges we encountered by addressing a wide range of aspects, including target types and the input data from within NDCs; external time series of national emissions, population, and GDP; uniform approach vs. country specifics; share of national emissions covered by NDCs; how to deal with the Land Use, Land-Use Change and Forestry (LULUCF) component and the conditionality of pledges; and establishing pathways from single-year targets. For use in NDCmitiQ, we furthermore construct an emissions data set from the baseline emissions provided in the NDCs. Example use cases show how the tool can help to analyse targets on a national, regional, or global scale and to quantify uncertainties caused by a lack of clarity in the NDCs. Results confirm that the conditionality of targets and assumptions about economic growth dominate uncertainty in mitigated emissions on a global scale, which are estimated as 48.9–56.1 Gt CO2 eq. AR4 for 2030 (10th/90th percentiles, median: 51.8 Gt CO2 eq. AR4; excluding LULUCF and bunker fuels; submissions until 17 April 2020 and excluding the USA). We estimate that 77 % of global 2017 emissions were emitted from sectors and gases covered by these NDCs. Addressing all updated NDCs submitted by 31 December 2020 results in an estimated 45.6–54.1 Gt CO2 eq. AR4 (median: 49.6 Gt CO2 eq. AR4, now including the USA again) and increased coverage.


2018 ◽  
Vol 243 ◽  
pp. 940-952 ◽  
Author(s):  
Daniel Ruiz Potma Gonçalves ◽  
João Carlos de Moraes Sá ◽  
Umakant Mishra ◽  
Flávia Juliana Ferreira Furlan ◽  
Lucimara Aparecida Ferreira ◽  
...  

Atmósfera ◽  
2015 ◽  
Vol 28 (4) ◽  
pp. 243-250 ◽  
Author(s):  
Faradiella Mohd Kusin ◽  
◽  
Nurul Izzati Mat Akhir ◽  
Ferdaus Mahamat-Yusuff ◽  
Muhamad Auang ◽  
...  

2010 ◽  
Vol 67 (1) ◽  
pp. 102-116 ◽  
Author(s):  
Carlos Clemente Cerri ◽  
Martial Bernoux ◽  
Stoecio Malta Ferreira Maia ◽  
Carlos Eduardo Pellegrino Cerri ◽  
Ciniro Costa Junior ◽  
...  

National inventories of anthropogenic greenhouse gas (GHG) emissions (implementation of the National Communications) are organized according to five main sectors, namely: Energy, Industrial Processes, Agriculture, Land-Use Change and Forestry (LUCF) and Waste. The objective of this study was to review and calculate the potential of greenhouse gas mitigation strategies in Brazil for the Agricultural and LUCF. The first step consisted in an analysis of Brazilian official and unofficial documents related to climate change and mitigation policies. Secondly, business as usual (BAU) and mitigation scenarios were elaborated for the 2010-2020 timeframe, and calculations of the corresponding associated GHG emissions and removals were performed. Additionally, two complementary approaches were used to point out and quantify the main mitigation options: a) following the IPCC 1996 guidelines and b) based on EX-ACT. Brazilian authorities announced that the country will target a reduction in its GHG between 36.1 and 38.9% from projected 2020 levels. This is a positive stand that should also be adopted by other developing countries. To reach this government goal, agriculture and livestock sectors must contribute with an emission reduction of 133 to 166 Mt CO2-eq. This seems to be reachable when confronted to our mitigation option values, which are in between the range of 178.3 to 445 Mt CO2-eq. Government investments on agriculture are necessary to minimize the efforts from the sectors to reach their targets.


Sign in / Sign up

Export Citation Format

Share Document