scholarly journals GLOBAL SOLUTIONS OF NEUTRINO DOMINATED ACCRETION FLOWS AROUND KERR BLACK HOLES

2013 ◽  
Vol 23 ◽  
pp. 295-297
Author(s):  
LI XUE ◽  
TONG LIU ◽  
WEI-MIN GU ◽  
JU-FU LU

By solving a set of coupled hydrodynamical and microphysical equations with some appropriate boundary conditions, we obtain three global solutions of typical neutrino-dominated accretion flows around different spinning black holes. Our results reveal that the effect of black hole spin on the flows is restricted within inner parts of neutrino-dominated regions.

2019 ◽  
Vol 488 (2) ◽  
pp. 2412-2422 ◽  
Author(s):  
Indu K Dihingia ◽  
Santabrata Das ◽  
Debaprasad Maity ◽  
Anuj Nandi

ABSTRACT We study the relativistic viscous accretion flows around the Kerr black holes. We present the governing equations that describe the steady-state flow motion in full general relativity and solve them in 1.5D to obtain the complete set of global transonic solutions in terms of the flow parameters, namely specific energy (${\mathcal E}$), specific angular momentum (${\mathcal L}$), and viscosity (α). We obtain a new type of accretion solution which was not reported earlier. Further, we show for the first time to the best of our knowledge that viscous accretion solutions may contain shock waves particularly when flow simultaneously passes through both inner critical point (rin) and outer critical point (rout) before entering into the Kerr black holes. We examine the shock properties, namely shock location (rs) and compression ratio (R, the measure of density compression across the shock front) and show that shock can form for a large region of parameter space in ${\cal L}\!-\!{\cal E}$ plane. We study the effect of viscous dissipation on the shock parameter space and find that parameter space shrinks as α is increased. We also calculate the critical viscosity parameter (αcri) beyond which standing shock solutions disappear and examine the correlation between the black hole spin (ak) and αcri. Finally, the relevance of our work is conferred where, using rs and R, we empirically estimate the oscillation frequency of the shock front (νQPO) when it exhibits quasi-periodic (QP) variations. The obtained results indicate that the present formalism seems to be potentially viable to account for the QPO frequency in the range starting from milli-Hz to kilo-Hz as $0.386~{\rm Hz}\le \nu _{\mathrm{ QPO}} (\frac{10\, \mathrm{M}_\odot }{M_{\mathrm{ BH}}}) \le 1312$ Hz for ak = 0.99, where MBH stands for the black hole mass.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Andres Anabalon ◽  
Dumitru Astefanesei ◽  
Antonio Gallerati ◽  
Mario Trigiante

Abstract In this article we study a family of four-dimensional, $$ \mathcal{N} $$ N = 2 supergravity theories that interpolates between all the single dilaton truncations of the SO(8) gauged $$ \mathcal{N} $$ N = 8 supergravity. In this infinitely many theories characterized by two real numbers — the interpolation parameter and the dyonic “angle” of the gauging — we construct non-extremal electrically or magnetically charged black hole solutions and their supersymmetric limits. All the supersymmetric black holes have non-singular horizons with spherical, hyperbolic or planar topology. Some of these supersymmetric and non-extremal black holes are new examples in the $$ \mathcal{N} $$ N = 8 theory that do not belong to the STU model. We compute the asymptotic charges, thermodynamics and boundary conditions of these black holes and show that all of them, except one, introduce a triple trace deformation in the dual theory.


2018 ◽  
Vol 27 (14) ◽  
pp. 1847025 ◽  
Author(s):  
Shahar Hod

Black-hole spacetimes are known to possess closed light rings. We here present a remarkably compact theorem which reveals the physically intriguing fact that these unique null circular geodesics provide the fastest way, as measured by asymptotic observers, to circle around spinning Kerr black holes.


Author(s):  
Malcolm Perry ◽  
Maria J Rodriguez

Abstract Nontrivial diffeomorphisms act on the horizon of a generic 4D black holes and create distinguishing features referred to as soft hair. Amongst these are a left-right pair of Virasoro algebras with associated charges that reproduce the Bekenstein-Hawking entropy for Kerr black holes. In this paper we show that if one adds a negative cosmological constant, there is a similar set of infinitesimal diffeomorphisms that act non-trivially on the horizon. The algebra of these diffeomorphisms gives rise to a central charge. Adding a boundary counterterm, justified to achieve integrability, leads to well-defined central charges with cL = cR. The macroscopic area law for Kerr-AdS black holes follows from the assumption of a Cardy formula governing the black hole microstates.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Shao-Jun Zhang

AbstractWe study massive scalar field perturbation on Kerr black holes in dynamical Chern–Simons gravity by performing a $$(2+1)$$ ( 2 + 1 ) -dimensional simulation. Object pictures of the wave dynamics in time domain are obtained. The tachyonic instability is found to always occur for any nonzero black hole spin and any scalar field mass as long as the coupling constant exceeds a critical value. The presence of the mass term suppresses or even quench the instability. The quantitative dependence of the onset of the tachyonic instability on the coupling constant, the scalar field mass and the black hole spin is given numerically.


Author(s):  
Charles D. Bailyn

This chapter explores the ways that accretion onto a black hole produces energy and radiation. As material falls into a gravitational potential well, energy is transformed from gravitational potential energy into other forms of energy, so that total energy is conserved. Observing such accretion energy is one of the primary ways that astrophysicists pinpoint the locations of potential black holes. The spectrum and intensity of this radiation is governed by the geometry of the gas flow, the mass infall rate, and the mass of the accretor. The simplest flow geometry is that of a stationary object accreting mass equally from all directions. Such spherically symmetric accretion is referred to as Bondi-Hoyle accretion. However, accretion flows onto black holes are not thought to be spherically symmetric—the infall is much more frequently in the form of a flattened disk.


2015 ◽  
Vol 24 (12) ◽  
pp. 1544022 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

Kerr black holes (BHs) have their angular momentum, [Formula: see text], bounded by their mass, [Formula: see text]: [Formula: see text]. There are, however, known BH solutions violating this Kerr bound. We propose a very simple universal bound on the rotation, rather than on the angular momentum, of four-dimensional, stationary and axisymmetric, asymptotically flat BHs, given in terms of an appropriately defined horizon linear velocity, [Formula: see text]. The [Formula: see text] bound is simply that [Formula: see text] cannot exceed the velocity of light. We verify the [Formula: see text] bound for known BH solutions, including some that violate the Kerr bound, and conjecture that only extremal Kerr BHs saturate the [Formula: see text] bound.


2018 ◽  
Vol 14 (S346) ◽  
pp. 426-432
Author(s):  
Y. Qin ◽  
T. Fragos ◽  
G. Meynet ◽  
P. Marchant ◽  
V. Kalogera ◽  
...  

AbstractThe six LIGO detections of merging black holes (BHs) allowed to infer slow spin values for the two pre-merging BHs. The three cases where the spins of the BHs can be determined in high-mass X-ray binaries (HMXBs) show that those BHs have high spin values. We discuss here scenarios explaining these differences in spin properties in these two classes of object.


2019 ◽  
Vol 28 (16) ◽  
pp. 2040012
Author(s):  
Rehana Rahim ◽  
Khalid Saifullah

We analyze the charged Johannsen–Psaltis black hole for energy extraction via the Penrose process. Efficiency of the Penrose process is found to be dependent on the deformation parameter of the metric and charge. Doing the calculations numerically, we find that, in the nonextremal limit, presence of charge leads to lesser efficiency than the Kerr. In the extremal cases with negative deformation parameter, charge leads to a very high efficiency, higher than that of the Kerr and Johannsen–Psaltis black holes.


2008 ◽  
Vol 23 (13) ◽  
pp. 2047-2053 ◽  
Author(s):  
M. R. SETARE

In this paper, we compute the corrections to the Cardy–Verlinde formula of four-dimensional Kerr black hole. These corrections are considered within the context of KKW analysis and arise as a result of the self-gravitational effect. Then we show that one can take into account the semiclassical corrections of the Cardy–Verlinde entropy formula by only redefining the Virasoro operator L0 and the central charge c.


Sign in / Sign up

Export Citation Format

Share Document