TIME-DEPENDENT SSC COOLING EFFECTS ON BLAZAR EMISSION

2014 ◽  
Vol 28 ◽  
pp. 1460181
Author(s):  
MICHAEL ZACHARIAS ◽  
REINHARD SCHLICKEISER

Blazars are among the most violent sources in the cosmos exhibiting flaring states with remarkably different variability time scales. Especially rapid flares with flux doubling time scales of the order of minutes have been puzzling for quite some time. Many modeling attempts use the well known linear and steady-state scenario for the cooling and emission processes in the jet, albeit the obvious strongly time-dependent nature of flares. Due to the feedback of the self-produced synchrotron radiation with additional scattering by the relativistic electrons, the synchrotron-self Compton (SSC) effect is inherently time-dependent. Recently, an analytical analysis on the effects of this nonlinear behavior has been presented. Here, we summarize these results concerning the effect of the time-dependent SSC cooling on the spectral energy distribution (SED), and the synchrotron lightcurves of blazars. For that, we calculated analytically the synchrotron, SSC and external Compton (EC) component of the SED, giving remarkably different spectral features compared to the standard linear approach. The resulting fluxes strongly depend on the parameters, and SSC might have a strong effect even in sources with strong external photon fields (such as FSRQs). For the synchrotron lightcurve we considered the effects of retardation, including the geometry of the source. The retardation might smear out some effects of the time-dependent cooling, but since lightcurves and SEDs have to be fitted simultaneously with the same set of parameters, the results give nonetheless important clues about the source. Thus, we argue for a wide utilization of the time-dependent treatment in modeling (especially rapid) blazar flares, since it accounts for features in the SED and the lightcurves that are usually accounted for by introducing several breaks in the electron distribution without any physical justification.

2014 ◽  
Vol 28 ◽  
pp. 1460183
Author(s):  
GUSTAVO E. ROMERO ◽  
DANIELA PÉREZ ◽  
GABRIELA S. VILA

An accretion disk around a supermassive black hole may be strongly perturbed by the presence of a secondary black hole. Recent simulations have shown that, under certain conditions, the tidal torques exerted by the secondary black hole may open an annular gap in the disk. In this regime, matter "overflows" across the secondary's orbit to accrete onto the primary and may feed a pair of relativistic jets. In this work we study the radiative properties of a binary system of supermassive black holes, assuming that a relativistic jet is launched from the primary and the migration of the secondary across the disk proceeds in the "overflowing" regime. The modified radiative spectrum of the disk is calculated accounting for strong gravitational effects in the innermost region. The jet emits non-thermal radiation all along the electromagnetic spectrum by interaction of locally accelerated electrons with the jet's magnetic field and internal and external radiation. In particular, we investigate whether the interaction of the relativistic electrons with the photons emitted by the accretion disk induces any signature in the spectral energy distribution of the jet that may reveal the presence of the secondary black hole.


2020 ◽  
Vol 634 ◽  
pp. A80 ◽  
Author(s):  
Bhoomika Rajput ◽  
C. S. Stalin ◽  
Suvendu Rakshit

We used the data from the Fermi Gamma-ray Space Telescope to characterise the γ-ray flux variability of blazars on month-like time scales. Our sample consists of 1120 blazars of which 481 are flat spectrum radio quasars (FSRQs) and 639 are BL Lac objects (BL Lacs). We generated monthly binned light curves of our sample for a period of approximately nine years from 2008 August to 2017 December and quantified variability by using excess variance (Fvar). On month-like time scales, 371/481 FSRQs are variable (80%), while only about 50% (304/639) of BL Lacs are variable. This suggests that FSRQs are more variable than BL Lac objects. We find a mean Fvar of 0.55 ± 0.33 and 0.47 ± 0.29 for FSRQs and BL Lacs respectively. Large Fvar in FSRQs is also confirmed from the analysis of the ensemble structure function. By Dividing our sample of blazars based on the position of the synchrotron peak in their broad-band spectral energy distribution, we find that the low synchrotron peaked (LSP) sources have the largest mean Fvar value of 0.54 ± 0.32 while the intermediate synchrotron peaked (ISP) and high synchrotron peaked sources have mean Fvar values of 0.45 ± 0.25 and 0.47 ± 0.33 respectively. On month-like time scales, we find FSRQs to show a high duty cycle (DC) of variability of 66% relative to BL Lacs that show a DC of 36%. We find that both the Fvar and time scale of variability (τ) do not correlate with MBH. We note that Fvar is found to be weakly correlated with Doppler factor (δ) and τ is also weakly correlated with δ. Most of the sources in our sample have τ of the order of days, which might be related to processes in the jet. We find marginal difference in the distribution of τ between FSRQs and BL Lacs.


2010 ◽  
Vol 19 (06) ◽  
pp. 887-892 ◽  
Author(s):  
MATTHIAS WEIDINGER ◽  
FELIX SPANIER

A time-dependent synchrotron self-Compton model (SSC) which is able to motivate the used electron spectra of many SSC models as a balance of acceleration and radiative losses is introduced. Using stochastic acceleration as well as Fermi-I processes even electron spectra with a rising part can be explained, which are mandatory to fit the low state spectral energy distribution (SED) of PKS 2155-304 as constrained from Fermi LAT observations. Due to the time resolution the outburst of PKS 2155-304 observed by H.E.S.S. in 2006 can be modelled self-consistently as fluctuations along the jet axis without introducing new sets of parameters. The model makes the time evolution of the SED also accessible, hence giving new insights into the flaring behavior of blazars.


2020 ◽  
Vol 501 (1) ◽  
pp. 337-346
Author(s):  
E Mestre ◽  
E de Oña Wilhelmi ◽  
D Khangulyan ◽  
R Zanin ◽  
F Acero ◽  
...  

ABSTRACT Since 2009, several rapid and bright flares have been observed at high energies (>100 MeV) from the direction of the Crab nebula. Several hypotheses have been put forward to explain this phenomenon, but the origin is still unclear. The detection of counterparts at higher energies with the next generation of Cherenkov telescopes will be determinant to constrain the underlying emission mechanisms. We aim at studying the capability of the Cherenkov Telescope Array (CTA) to explore the physics behind the flares, by performing simulations of the Crab nebula spectral energy distribution, both in flaring and steady state, for different parameters related to the physical conditions in the nebula. In particular, we explore the data recorded by Fermi during two particular flares that occurred in 2011 and 2013. The expected GeV and TeV gamma-ray emission is derived using different radiation models. The resulting emission is convoluted with the CTA response and tested for detection, obtaining an exclusion region for the space of parameters that rule the different flare emission models. Our simulations show different scenarios that may be favourable for achieving the detection of the flares in Crab with CTA, in different regimes of energy. In particular, we find that observations with low sub-100 GeV energy threshold telescopes could provide the most model-constraining results.


2020 ◽  
Vol 500 (3) ◽  
pp. 3240-3253
Author(s):  
Amanda R Lopes ◽  
Eduardo Telles ◽  
Jorge Melnick

ABSTRACT We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of H ii galaxies, dwarf starburst galaxies spectroscopically selected through their strong narrow emission lines in SDSS DR13 at z < 0.4, cross-matched with photometric catalogues from GALEX, SDSS, UKIDSS, and WISE. We modelled and fitted the SEDs with the code CIGALE adopting different descriptions of SFH. By adding information from different independent studies, we find that H ii galaxies are best described by episodic SFHs including an old (10 Gyr), an intermediate age (100−1000 Myr) and a recent population with ages < 10 Myr. H ii galaxies agree with the SFR−M* relation from local star-forming galaxies, and only lie above such relation when the current SFR is adopted as opposed to the average over the entire SFH. The SFR−M* demonstrated not to be a good tool to provide additional information about the SFH of H ii galaxies, as different SFH present a similar behaviour with a spread of <0.1 dex.


2020 ◽  
Vol 499 (3) ◽  
pp. 4068-4081 ◽  
Author(s):  
Ting-Wen Wang ◽  
Tomotsugu Goto ◽  
Seong Jin Kim ◽  
Tetsuya Hashimoto ◽  
Denis Burgarella ◽  
...  

ABSTRACT In order to understand the interaction between the central black hole and the whole galaxy or their co-evolution history along with cosmic time, a complete census of active galactic nucleus (AGN) is crucial. However, AGNs are often missed in optical, UV, and soft X-ray observations since they could be obscured by gas and dust. A mid-infrared (MIR) survey supported by multiwavelength data is one of the best ways to find obscured AGN activities because it suffers less from extinction. Previous large IR photometric surveys, e.g. Wide field Infrared Survey Explorer and Spitzer, have gaps between the MIR filters. Therefore, star-forming galaxy-AGN diagnostics in the MIR were limited. The AKARI satellite has a unique continuous nine-band filter coverage in the near to MIR wavelengths. In this work, we take advantage of the state-of-the-art spectral energy distribution modelling software, cigale, to find AGNs in MIR. We found 126 AGNs in the North Ecliptic Pole-Wide field with this method. We also investigate the energy released from the AGN as a fraction of the total IR luminosity of a galaxy. We found that the AGN contribution is larger at higher redshifts for a given IR luminosity. With the upcoming deep IR surveys, e.g. JWST, we expect to find more AGNs with our method.


1997 ◽  
Vol 163 ◽  
pp. 725-726
Author(s):  
K.-W. Hodapp ◽  
E. F. Ladd

Stars in the earliest phases of their formation, i.e., those accreting the main component of their final mass, are deeply embedded within dense cores of dust and molecular material. Because of the high line-of-sight extinction and the large amount of circumstellar material, stellar emission is reprocessed by dust into long wavelength radiation, typically in the far-infrared and sub-millimeter bands. Consequently, the youngest sources are strong submillimeter continuum sources, and often undetectable as point sources in the near-infrared and optical. The most deeply embedded of these sources have been labelled “Class 0” sources by André, Ward-Thompson, & Barsony (1994), in an extension of the spectral energy distribution classification scheme first proposed by Adams, Lada, & Shu (1987).


2020 ◽  
Vol 497 (4) ◽  
pp. 4262-4275
Author(s):  
Thomas M Jackson ◽  
A Pasquali ◽  
C Pacifici ◽  
C Engler ◽  
A Pillepich ◽  
...  

ABSTRACT The stellar mass assembly of galaxies can be affected by both secular and environmental processes. In this study, for the first time, we investigate the stellar mass assembly of $\sim 90\, 000$ low-redshift, central galaxies selected from SDSS group catalogues ($M_{\rm Stellar}\gtrsim 10^{9.5}\, \mathrm{M}_{\odot }$, $M_{\rm Halo}\gtrsim 10^{12}\, \mathrm{M}_{\odot }$) as a function of both stellar mass and halo mass. We use estimates of the times at which 10, 50, and 90 per cent of the stellar mass were assembled from photometric spectral energy distribution fitting, allowing a more complete investigation than single stellar ages alone. We consider trends in both stellar mass and halo mass simultaneously, finding dependences of all assembly times on both. We find that galaxies with higher stellar masses (at constant halo mass) have on average older lookback times, similar to previous studies of galaxy assembly. We also find that galaxies at higher halo mass (at constant stellar mass) have younger lookback times, possibly due to a larger reservoir of gas for star formation. An exception to this is a subsample with high stellar-to-halo mass ratios, which are likely massive, field spirals. We compare these observed trends to those predicted by the TNG300 simulation, finding good agreement overall as a function of either stellar mass or halo mass. However, some differences in the assembly times (of up to ∼3 Gyr) appear when considering both stellar mass and halo mass simultaneously, noticeably at intermediate stellar masses (MStellar ∼ 1011 M⊙). These discrepancies are possibly linked to the quenched fraction of galaxies and the kinetic mode active galactic nucleus feedback implemented in TNG300.


1997 ◽  
Vol 180 ◽  
pp. 365-365
Author(s):  
B. E. Reddy ◽  
M. Parthasarathy

CCD imaging and BVRI photometry of 14 IRAS sources with far-IR colours similar to planetary nebulae and post-AGB stars are presented. Also results of optical and near-IR spectroscopy of 10 of these candidates are given. Based on the spectral energy distribution from 0.4 μm to 100 μm, the sample of program stars are put into two groups. The sources IRAS 08187-1905, IRAS 05238-0626 and IRAS 17086-2403 present similar flux distributions. These three sources have detached cold dust components with dust radii Rd ≈ 1000 R∗. The low infrared variability of theses sources suggests that the intense mass loss has been ceased. All three sources are at high galactic latitude (1>9°) suggesting that these are old low-mass evolved stars. In the IRAS colour-colour diagram of Likkel et al (1991) these sources fall in the region where most of the stars are evolved stars and PNe but without CO detection. This is consistent with at least one source IRAS 17086-2403, in which OH and CO molecular features are not detected. The far-IR excess, non-variability and high latitude of these objects suggest that these are post-AGB supergiants, slowly evolving towards planetary nebula phase.


Sign in / Sign up

Export Citation Format

Share Document