scholarly journals Searches for exotic phenomena with the ATLAS detector

2015 ◽  
Vol 39 ◽  
pp. 1560094
Author(s):  
Patrick Czodrowski

Recent results of searches for exotic phenomena (new phenomena other than Supersymmetry) with the ATLAS experiment at the Large Hadron Collider conducted with proton–proton collision data at [Formula: see text][Formula: see text]TeV taken 2012 were presented.

2018 ◽  
Vol 182 ◽  
pp. 02119
Author(s):  
Liaoshan Shi

In this report, we present the latest ATLAS results on the measurement of the cross sections and couplings of the Higgs boson in the fermionic decay modes, H → μ+μ-, H → τ+τ- and H → bb. The searches are performed with proton-proton collision data delivered by the Large Hadron Collider during Run 1 and the first two years of Run 2 at √s = 7, 8 and 13 TeV.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

AbstractA search for R-parity-violating supersymmetry in final states characterized by high jet multiplicity, at least one isolated light lepton and either zero or at least three b-tagged jets is presented. The search uses $${139}\,{\text {fb}^{-1}}$$ 139 fb - 1 of $$\sqrt{s} = {13}\hbox { TeV}$$ s = 13 TeV proton–proton collision data collected by the ATLAS experiment during Run 2 of the Large Hadron Collider. The results are interpreted in the context of R-parity-violating supersymmetry models that feature gluino production, top-squark production, or electroweakino production. The dominant sources of background are estimated using a data-driven model, based on observables at medium jet multiplicity, to predict the b-tagged jet multiplicity distribution at the higher jet multiplicities used in the search. Machine-learning techniques are used to reach sensitivity to electroweakino production, extending the data-driven background estimation to the shape of the machine-learning discriminant. No significant excess over the Standard Model expectation is observed and exclusion limits at the 95% confidence level are extracted, reaching as high as 2.4 TeV in gluino mass, 1.35 TeV in top-squark mass, and 320 (365) GeV in higgsino (wino) mass.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractA search for the pair production of heavy leptons as predicted by the type-III seesaw mechanism is presented. The search uses proton–proton collision data at a centre-of-mass energy of 13 TeV, corresponding to $$ 139\,{\text {fb}}^{-1} $$ 139 fb - 1 of integrated luminosity recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis focuses on the final state with two light leptons (electrons or muons) of different flavour and charge combinations, with at least two jets and large missing transverse momentum. No significant excess over the Standard Model expectation is observed. The results are translated into exclusion limits on heavy-lepton masses, and the observed lower limit on the mass of the type-III seesaw heavy leptons is 790 GeV at 95% confidence level.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract Inclusive and differential cross-sections for the production of top quarks in association with a photon are measured with proton-proton collision data corresponding to an integrated luminosity of 139 fb−1. The data were collected by the ATLAS detector at the LHC during Run 2 between 2015 and 2018 at a centre-of-mass energy of 13 TeV. The measurements are performed in a fiducial volume defined at parton level. Events with exactly one photon, one electron and one muon of opposite sign, and at least two jets, of which at least one is b-tagged, are selected. The fiducial cross-section is measured to be $$ {39.6}_{-2.3}^{+2.7} $$ 39.6 − 2.3 + 2.7 fb. Differential cross-sections as functions of several observables are compared with state-of-the-art Monte Carlo simulations and next-to-leading-order theoretical calculations. These include cross-sections as functions of photon kinematic variables, angular variables related to the photon and the leptons, and angular separations between the two leptons in the event. All measurements are in agreement with the predictions from the Standard Model.


Sign in / Sign up

Export Citation Format

Share Document