A Derivation of Aharonov–Casher Phase and Another Adiabatic Approximation for Pure Gauge Under General Rashba Effects

SPIN ◽  
2016 ◽  
Vol 06 (02) ◽  
pp. 1640006
Author(s):  
Kenji Kondo

Spin filters using spin–orbit interaction (SOI) are very important in the field of spintronics. Therefore, a theory of devices using SOI is necessary for designing the spin filters. The spin-filtering devices can be used to generate and detect spin polarized currents. Many researchers have reported on the spin-filters using linear Rashba SOI. However, the spin-filters using square and cubic Rashba SOIs are not yet reported. This is surely because the Aharonov–Casher (AC) phases acquired under square and cubic Rashba SOIs are ambiguous. In this paper, we try to derive the AC phases acquired under [Formula: see text]th order Rashba SOIs, which we call general Rashba SOIs, using non-Abelian SU (2) gauge theory. As a result, we have successfully derived these AC phases without completing the square methods which is useless except for linear Rashba SOI. In the process of derivation of AC phases, we have also found another expression of adiabatic approximation for a pure gauge. This finding will lead to the starting point for deeply understanding the adiabatic approximation. Using the above AC phases under general Rashba SOIs, we investigate the spin filter effect in Aharonov–Bohm (AB) ring with double quantum dots (QDs) under general Rashba SOIs. The spin transport is investigated from left nanowire to right nanowire in this structure within tight binding approximation. Especially, we focus on the difference of spin filter effects among general Rashba SOIs. We have obtained the penetrating magnetic flux dependence of spin polarization for the AB ring subject to general Rashba SOIs. It is found that the perfect spin filtering is achieved for all the Rashba SOIs. This result indicates that this AB ring under general Rashba SOIs can be a promising device for spin current generation without ferromagnetic metals. Moreover, this device under different order Rashba SOI behaves in totally different ways in response to penetrating magnetic flux, which is attributed to [Formula: see text] times rotation of directions of the effective magnetic field in the in-plane momentum. This fact means that we can determine the order of Rashba SOIs according to the peak position. We consider that this is very useful for many researchers.

2006 ◽  
Vol 74 (3) ◽  
Author(s):  
Rafael Sánchez ◽  
Ernesto Cota ◽  
Ramón Aguado ◽  
Gloria Platero

2014 ◽  
Vol 16 (33) ◽  
pp. 17493-17498 ◽  
Author(s):  
Dan-Dan Wu ◽  
Hua-Hua Fu ◽  
Lei Gu ◽  
Yun Ni ◽  
Feng-Xia Zu ◽  
...  

A thermoelectric heterojunction device based on zigzag silicon carbide nanoribbons can serve as a perfect thermal spin filter and switcher.


2017 ◽  
Vol 95 (24) ◽  
Author(s):  
V. Lopes ◽  
R. A. Padilla ◽  
G. B. Martins ◽  
E. V. Anda

2016 ◽  
Vol 30 (32n33) ◽  
pp. 1650392 ◽  
Author(s):  
Zi-Yue Zhang

Spin-polarized electron transport through a zigzag zinc oxide nanoribbon (ZnONR) has been studied using first-principles transport simulations. Ribbons without edges passivated show 100% spin polarization at small bias voltage independently of width. The ribbons with edge zinc atoms passivated maintain absolute spin-filtering effect in much larger bias region. The results demonstrate that zigzag ZnONRs act as perfect spin-filters in the absence of magnetic electrodes and external fields.


2011 ◽  
Vol 25 (22) ◽  
pp. 3019-3025
Author(s):  
QING-QIANG XU ◽  
BEN-LING GAO ◽  
SHI-JIE XIONG

We investigate the transport properties of an interacting ring threaded by a magnetic flux and with Rashba spin-orbit coupling, based on a recently developed functional renormalized group technique. In the calculations of the electronic transport processes, the Coloumb On-site interactions are taken into account. For an interacting ring connected to two leads, we find that (i) for ΦAC = 0, the behavior of transmission zero at ΦAB = π is generic for the universal regime; (ii) for certain ΦAC and ΦAB, one can use the mesoscopic ring as spin filter even in the presence of the local interaction in the ring.


2003 ◽  
Vol 90 (2) ◽  
Author(s):  
László Borda ◽  
Gergely Zaránd ◽  
Walter Hofstetter ◽  
B. I. Halperin ◽  
Jan von Delft

2007 ◽  
Vol 340-341 ◽  
pp. 549-554 ◽  
Author(s):  
Hiroichi Hase ◽  
Shigeo Kotake ◽  
Mitsuhiro Ohota ◽  
Hiroshi Kawakami ◽  
Yasuyuki Suzuki

In this study, we propose a new technique to evaluate some properties during fracture propagation, such as stress at the crack surface and the propagating-route by measuring distributions of leaked magnetic flux vector from the residual magnetization in the vicinity of the fracture surface. The technique involves the application of an inverse-magnetostrictive effect in ferromagnetic materials, such as tempered 11/4Cr-1/2Mo steels below the ductile-brittle transition temperature. The maximum magnetic flux density was increased with impact absorption energy measured by Charpy impact test. The highest magnetic flux density located at the crack starting point, where a fish-eye type surface morphology was observed in fractographic analysis. It indicates the highest stress for fracture initiation at this point. According to the analysis, the change in the magnetic flux vectors corresponds with the direction of crack propagation, which was well explained from the magnetostrictive properties of iron. The measurement of magnetic flux density distribution will be useful for the fractographic analysis to discuss the in-situ phenomena that are difficult to obtain in previous methods.


2020 ◽  
Author(s):  
Ashima Bajaj ◽  
Prabhleen Kaur ◽  
Aakanksha Sud ◽  
Marco Berritta ◽  
Md. Ehesan Ali

The molecular topology in the single-molecular nano-junctions through which the de Broglie wave propagates plays a crucial role in controlling the molecular conductance. The enhancement and reduction of the conductance due to constructive and destructive Quantum Interference (QI) in para and meta connected molecules respectively has already been well established. Herein, we investigated the influence of QI on spin transport in the molecular junctions containing organic radicals as magnetic centres. The role of the localized spins on the QI as well as on spin filtering capability is investigated employing density functional theory in combination with non-equilibrium Green's function (NEGF-DFT) techniques. Various organic radicals including nitroxide (NO), phenoxy (PO) and methyl (CH2) radicals attached to the central benzene ring of pentacene with different terminal connections (para and meta) to gold electrodes are examined. Due to more obvious QI effects, para connected pentacene is found to be more conductive than meta one. Surprisingly, on incorporating a radical centre, along with spin filtering, a significant quenching of QI effects is observed which manifests itself in such a way that the conductance of meta coupled radicals is found to be more than para by two orders of magnitude. The decoherence induced by radical centre is analysed and discussed in terms of spin-spin coupling of radical's unpaired electron with the tunneling electrons.<br>


2020 ◽  
Author(s):  
Ashima Bajaj ◽  
Prabhleen Kaur ◽  
Aakanksha Sud ◽  
Marco Berritta ◽  
Md. Ehesan Ali

The molecular topology in the single-molecular nano-junctions through which the de Broglie wave propagates plays a crucial role in controlling the molecular conductance. The enhancement and reduction of the conductance due to constructive and destructive Quantum Interference (QI) in para and meta connected molecules respectively has already been well established. Herein, we investigated the influence of QI on spin transport in the molecular junctions containing organic radicals as magnetic centres. The role of the localized spins on the QI as well as on spin filtering capability is investigated employing density functional theory in combination with non-equilibrium Green's function (NEGF-DFT) techniques. Various organic radicals including nitroxide (NO), phenoxy (PO) and methyl (CH2) radicals attached to the central benzene ring of pentacene with different terminal connections (para and meta) to gold electrodes are examined. Due to more obvious QI effects, para connected pentacene is found to be more conductive than meta one. Surprisingly, on incorporating a radical centre, along with spin filtering, a significant quenching of QI effects is observed which manifests itself in such a way that the conductance of meta coupled radicals is found to be more than para by two orders of magnitude. The decoherence induced by radical centre is analysed and discussed in terms of spin-spin coupling of radical's unpaired electron with the tunneling electrons.<br>


Sign in / Sign up

Export Citation Format

Share Document