scholarly journals A Refined Structure Preserving Image Abstraction Framework as a Pre-Processing Technique for Desire Focusing on Prominent Structure and Artistic Stylization

Author(s):  
M. P. Pavankumar ◽  
B. Poornima ◽  
H. S. Nagendraswamy ◽  
C. Manjunath ◽  
B. E. Rangaswamy
Author(s):  
M. P. Pavan Kumar ◽  
B. Poornima ◽  
H. S. Nagendraswamy ◽  
C. Manjunath

Author(s):  
Pavan Kumar ◽  
Poornima B. ◽  
Nagendraswamy H. S. ◽  
Manjunath C.

The proposed abstraction framework manipulates the visual-features from low-illuminated and underexposed images while retaining the prominent structural, medium scale details, tonal information, and suppresses the superfluous details like noise, complexity, and irregular gradient. The significant image features are refined at every stage of the work by comprehensively integrating a series of AnshuTMO and NPR filters through rigorous experiments. The work effectively preserves the structural features in the foreground of an image and diminishes the background content of an image. Effectiveness of the work has been validated by conducting experiments on the standard datasets such as Mould, Wang, and many other interesting datasets and the obtained results are compared with similar contemporary work cited in the literature. In addition, user visual feedback and the quality assessment techniques were used to evaluate the work. Image abstraction and stylization applications, constraints, challenges, and future work in the fields of NPR domain are also envisaged in this paper.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
M. P. Pavan Kumar ◽  
B. Poornima ◽  
H. S. Nagendraswamy ◽  
C. Manjunath ◽  
B. E. Rangaswamy ◽  
...  

Author(s):  
Yasushi Kokubo ◽  
Hirotami Koike ◽  
Teruo Someya

One of the advantages of scanning electron microscopy is the capability for processing the image contrast, i.e., the image processing technique. Crewe et al were the first to apply this technique to a field emission scanning microscope and show images of individual atoms. They obtained a contrast which depended exclusively on the atomic numbers of specimen elements (Zcontrast), by displaying the images treated with the intensity ratio of elastically scattered to inelastically scattered electrons. The elastic scattering electrons were extracted by a solid detector and inelastic scattering electrons by an energy analyzer. We noted, however, that there is a possibility of the same contrast being obtained only by using an annular-type solid detector consisting of multiple concentric detector elements.


Author(s):  
K. Florian Klemp ◽  
J.R. Guyton

The earliest distinctive lesions in human atherosclerosis are fatty streaks (FS), characterized initially by lipid-laden foam cell formation. Fibrous plaques (FP), the clinically significant lesions, differ from FS in several respects. In addition to foam cells, the FP also exhibit fibromuscular proliferation and a necrotic core region rich in extracellular lipid. The possible transition of FS into mature FP has long been debated, however. A subset of FS described by Katz etal., was intermediate in lipid composition between ordinary FS and FP. We investigated this hypothesis by electron microscopic cytochemistry by employing a tissue processing technique previously described by our laboratory. Osmium-tannic acid-paraphenylenediamine (OTAP) tissue preparation enabled ultrastructural analysis of lipid deposits to discern features characteristic of mature fibrous plaques.


Author(s):  
X. Zhang ◽  
Y. Pan ◽  
T.T. Meek

Industrial microwave heating technology has emerged as a new ceramic processing technique. The unique advantages of fast sintering, high density, and improved materials properties makes it superior in certain respects to other processing methods. This work presents the structure characterization of a microwave sintered ceramic matrix composite.Commercial α-alumina powder A-16 (Alcoa) is chosen as the matrix material, β-silicon carbide whiskers (Third Millennium Technologies, Inc.) are used as the reinforcing element. The green samples consisted of 90 vol% Al2O3 powder and 10 vol% ultrasonically-dispersed SiC whiskers. The powder mixture is blended together, and then uniaxially pressed into a cylindrical pellet under a pressure of 230 MPa, which yields a 52% green density. The sintering experiments are carried out using an industry microwave system (Gober, Model S6F) which generates microwave radiation at 2.45 GHz with a maximum output power of 6 kW. The composites are sintered at two different temperatures (1550°C and 1650°C) with various isothermal processing time intervals ranging from 10 to 20 min.


Author(s):  
M.J. Kim ◽  
L.C. Liu ◽  
S.H. Risbud ◽  
R.W. Carpenter

When the size of a semiconductor is reduced by an appropriate materials processing technique to a dimension less than about twice the radius of an exciton in the bulk crystal, the band like structure of the semiconductor gives way to discrete molecular orbital electronic states. Clusters of semiconductors in a size regime lower than 2R {where R is the exciton Bohr radius; e.g. 3 nm for CdS and 7.3 nm for CdTe) are called Quantum Dots (QD) because they confine optically excited electron- hole pairs (excitons) in all three spatial dimensions. Structures based on QD are of great interest because of fast response times and non-linearity in optical switching applications.In this paper we report the first HREM analysis of the size and structure of CdTe and CdS QD formed by precipitation from a modified borosilicate glass matrix. The glass melts were quenched by pouring on brass plates, and then annealed to relieve internal stresses. QD precipitate particles were formed during subsequent "striking" heat treatments above the glass crystallization temperature, which was determined by differential thermal analysis.


Author(s):  
J. Magelin Mary ◽  
Chitra K. ◽  
Y. Arockia Suganthi

Image processing technique in general, involves the application of signal processing on the input image for isolating the individual color plane of an image. It plays an important role in the image analysis and computer version. This paper compares the efficiency of two approaches in the area of finding breast cancer in medical image processing. The fundamental target is to apply an image mining in the area of medical image handling utilizing grouping guideline created by genetic algorithm. The parameter using extracted border, the border pixels are considered as population strings to genetic algorithm and Ant Colony Optimization, to find out the optimum value from the border pixels. We likewise look at cost of ACO and GA also, endeavors to discover which one gives the better solution to identify an affected area in medical image based on computational time.


2015 ◽  
Vol 135 (9) ◽  
pp. 1080-1084
Author(s):  
Yoshiki Nakata ◽  
Yoshiki Matsuba ◽  
Noriaki Miyanaga

Sign in / Sign up

Export Citation Format

Share Document