Climate Change Actions and Just Transition

2018 ◽  
Vol 06 (04) ◽  
pp. 1850024
Author(s):  
Ying ZHANG ◽  
Mou WANG

This paper elaborates the progress of the studies and negotiations on a just transition of the workforce and the creation of decent and quality jobs, in the context of implementing response measures under the United Nations Framework Convention on Climate Change (UNFCCC). Just transition in essence deals with the employment issues, thus the impact of climate change policies on employment should be understood in the first place. Low-carbon development refers to a development path to low-carbon economic growth by phasing out fossil fuels, with the objective of achieving sustainable development while fighting climate change. Adjustments in the industry structure and energy structure will not only have an impact on the employment scale and structure but also generate new demand for job skills. In order to achieve just transition in implementing climate policies, China should promote targeted research, create more low-carbon jobs by increasing green investment, and pay special attention to people who lose their jobs due to the implementation of climate policies and keep them from falling into poverty.

2015 ◽  
Vol 06 (02) ◽  
pp. 1550008 ◽  
Author(s):  
CÉLINE GUIVARCH ◽  
STÉPHANIE MONJON ◽  
JULIE ROZENBERG ◽  
ADRIEN VOGT-SCHILB

Energy security improvement is often presented as a co-benefit of climate policies. This paper evaluates this claim. It investigates whether climate policy would improve energy security, while accounting for the difficulties entailed by the many-faceted nature of the concept and the large uncertainties on the determinants of future energy systems. A multi-dimension analysis grid is used to capture the energy security concept, and a database of scenarios allows us to explore the uncertainty space. The results, focusing on Europe, reveal there is no unequivocal effect of climate policy on all the perspectives of energy security. Moreover, time significantly matters: the impact of climate policies is mixed in the short term and globally good in the medium term. In the long term, there is a risk of degradation of the energy security. Lastly, we examine the robustness of our results to uncertainties on drivers of economic growth, availability of fossil fuels and the potentials and low-carbon technologies, and find that they are sensitive mainly to fossil fuels availability, low carbon technologies in the energy sector and improvements in energy efficiency.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7838
Author(s):  
Prafula Pearce

The transition from fossil fuels to renewable energy requires cooperation from all, including corporations, shareholders, and institutional investors. The purpose of this paper is to explore climate change litigation risks for Australian energy companies and investors from a policy and governance perspective. Companies are increasingly reporting their climate policies to satisfy their shareholders and investor demands. In addition, the government and judiciary are making laws and decisions to support the Paris Agreement. This paper explores whether company directors can and, in some cases, should be considering the impact of climate change litigation risks on their business, or else risk breaching their obligation to exercise care and diligence under the Corporation Act 2001 (Cth, Australia). The paper concludes that in addition to reducing climate change litigation risks, Australian energy companies and institutional investment bodies that invest in Australian energy companies can make informed climate risk decisions by aligning their investments with the goal of net-zero or reduced emissions.


2019 ◽  
Vol 27 (2) ◽  
pp. 185-199 ◽  
Author(s):  
James W.N. Steenberg ◽  
Peter N. Duinker ◽  
Irena F. Creed ◽  
Jacqueline N. Serran ◽  
Camille Ouellet Dallaire

In response to global climate change, Canada is transitioning towards a low-carbon economy and the need for policy approaches that are effective, equitable, coordinated, and both administratively and politically feasible is high. One point is clear; the transition is intimately tied to the vast supply of ecosystem services in the boreal zone of Canada. This paper describes four contrasting futures for the boreal zone using scenario analysis, which is a transdisciplinary, participatory approach that considers alternative futures and policy implications under conditions of high uncertainty and complexity. The two critical forces shaping the four scenarios are the global economy’s energy and society’s capacity to adapt. The six drivers of change are atmospheric change, the demand for provisioning ecosystem services, the demand for nonprovisioning ecosystem services, demographics, and social values, governance and geopolitics, and industrial innovation and infrastructure. The four scenarios include: (i) the Green Path, where a low-carbon economy is coupled with high adaptive capacity; (ii) the Uphill Climb, where a low-carbon economy is instead coupled with low adaptive capacity; (iii) the Carpool Lane, where society has a strong capacity to adapt but a reliance on fossil fuels; and (iv) the Slippery Slope, where there is both a high-carbon economy and a society with low adaptive capacity. The scenarios illustrate the importance of transitioning to a low-carbon economy and the role of society’s adaptive capacity in doing so. However, they also emphasize themes like social inequality and adverse environmental outcomes arising from the push towards climate change mitigation.


2021 ◽  
Author(s):  
Xiping Wang ◽  
Sujing Wang

Abstract As an effective tool of carbon emission reduction, emission trading has been widely used in many countries. Since 2013, China implemented carbon emission trading in seven provinces and cities, with iron and steel industry included in the first batch of pilot industries. This study attempts to explore the policy effect of emission trading on iron and steel industry in order to provide data and theoretical support for the low-carbon development of iron and steel industry as well as the optimization of carbon market. With panel data of China’s 29 provinces from 2006 to 2017, this study adopted a DEA-SBM model to measure carbon emission efficiency of China’s iron and steel industry (CEI) and a difference-in-differences (DID) method to explore the impact of emission trading on CEI. Moreover, regional heterogeneity and influencing mechanisms were further investigated, respectively. The results indicate that: (1) China's emission trading has a significant and sustained effect on carbon abatement of iron and steel industry, increasing the annual average CEI by 12.6% in pilot provinces. (2) The policy effects are heterogeneous across diverse regions. Higher impacts are found in the western and eastern regions, whereas the central region is not significant. (3) Emission trading improves CEI by stimulating technology innovation, reducing energy intensity, and adjusting energy structure. (4) Economic level and industrial structure are negatively related to CEI, while environmental governance and openness degree have no obvious impacts. Finally, according to the results and conclusions, some specific suggestions are proposed.


2021 ◽  
Author(s):  
Kepa Solaun ◽  
Gerard Alleng ◽  
Adrián Flores ◽  
Chiquita Resomardono ◽  
Katharina Hess ◽  
...  

Suriname is highly vulnerable to the effects of climate change. Among the factors that exacerbate its vulnerability are its dependency on fossil fuels, the degradation of important ecosystems (e.g., mangroves), and the fact that 87% of the population, and most of the countrys economic activity is located within the low-lying coastal area. Many sectors are at risk of suffering losses and damage caused by gradual changes and extreme events related to climate change. For Suriname to develop sustainably, it should incorporate climate change and its effects into its decision-making process based on scientific- evidence. The State of the Climate Report analyzes Surinames historical climate (1990-2014) and provides climate projections for three time horizons (2020-2044, 2045-2069, 2070-2094) through two emissions scenarios (intermediate/ SSP2-4.5 and severe/ SSP5-8.5). The analysis focuses on changes in sea level, temperature, precipitation, relative humidity, and winds for the seven subnational locations of Paramaribo, Albina, Bigi Pan MUMA, Brokopondo, Kwamalasamutu, Tafelberg Natural Reserve, and Upper Tapanahony. The Report also analyzes climate risk for the countrys ten districts by examining the factors which increase their exposure and vulnerability on the four most important sectors affected by climate change: infrastructure, agriculture, water, and forestry, as well as examining the effects across the sectors. The State of the Climate Report provides essential inputs for Suriname to develop and update its climate change policies and targets. These policies and targets should enable an adequate mainstreaming of climate change adaptation and resilience enhancementinto day-to-day government operations. It is expected that the Report will catalyze similar efforts in the future to improve decision-making by providing science-based evidence.


Author(s):  
Radu Radoi ◽  
Ioan Pavel ◽  
Corneliu Cristescu ◽  
Liliana Dumitrescu

Fossil fuels are an exhaustible resource on Earth, and their use pollutes the environment massively. The population of the planet has grown a lot, and for the production of domestic hot water, to ensure a decent standard of living, it is necessary to consume increasing quantities of fossil fuels. The very high level of greenhouse gases released into the atmosphere leads to an increase in average of annual temperature and climate change. Climate change is manifested by the melting of the ice caps, which has the consequence of increasing the level of the seas and oceans. Climate change also leads to extreme weather events such as floods, heat waves or the appearance of arid areas. Risks to human health have increased through deaths caused by heat or by changing the way some diseases are spread. Risks also exist for flora and wildlife due to rapid climate change.Many species of animals migrate, and other species of animals and plants are likely to disappear. Climate change also leads to costs for society and the economy due to damage to property and infrastructure, which have been more than 90 billion euros in the last 30 years, just because of the floods. In order to reduce the effects of environmental pollution, ecological energy production solutions need to be expanded. The article presents the creation of an experimental stand of a Solar - TLUD stove combined system for the production of domestic hot water in a sustainable way. TLUD is the acronym for "Top-Lit UpDraft". The advantage of the combined heat system is that it can provide thermal energy both during the day and at night. If the atmospheric conditions are unfavorable (clouds, fog) and do not allow the water to be heated only with the solar panel, TLUD gas stove can be used to supplement the energy. The TLUD stove has low Carbon Monoxide (CO) and Particulate Matter (PM) emissions. After gasification, about 10% of the carbon contained in the biomass is thermally stabilized and can be used as a "biochar" in agriculture or it can be burnt completely, resulting in very little ash. The stand is composed of a solar thermal panel, a TLUD stove, a boiler for hot water storage and an automation system with circulation pumps and temperature sensors. To record the experimental results, a data acquisition board was used, with which data were recorded from a series of temperature and flow transducers located in the installation. Experimental results include diagrams for temperature variation, available energy and heat accumulated in the boiler. Keywords: combined thermal system, TLUD stove, domestic hot water, solar thermal panel, data aquisition system


Author(s):  
Nick Jelley

‘Why do we need renewables?’ describes the dangers of fossil fuels and explains the importance of renewable energy as an alternative. It shows that the use of fossil fuels causes global warming and climate change, leading to widespread concern, and also to a growing realization of the harm caused by the air pollution from coal burning and from internal combustion engines in cars and lorries. These threats are causing a switch away from fossil fuels to renewables that is gaining impetus from the growing awareness of the increased intensity and frequency of extreme weather seen in recent years. This transition is also being aided by the falling price of clean energy from renewables, in particular, solar and wind farms, which will become the dominant sources. The area of land or sea required for these farms is readily available, as are the back-ups required to handle their variability. Alternative supplies of low-carbon energy are examined. In the Paris Agreement in 2015, it was recognized that carbon dioxide emissions must reach net-zero by 2050 to avoid dangerous climate change.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Isak Karabegović

It is well-known that, in the past decades, the burning of fossil fuels was identified as the major cause of climate change. Climate change mitigation is becoming a central concern of global society. Limiting global warming to below 2 °C above the temperature of the pre-industrial period is the key to preserving global ecosystems and providing a secure basis for human activities, as well as reducing excessive environmental change. The ambitions increased at an accelerated pace with a dramatic expansion of net zero-emission targets. Increasing pressure from citizens and society has forced countries to intensify their climate plans, while the private sector has bought a record amount of renewable energy. An energy system based on fossil fuels must be replaced by renewable energy with low carbon emissions with improved energy efficiency. That applies to all consumers of fossil energy: cities, villages, building sectors, industry, transport, agriculture, and forestry. The paper explores and presents the strategy of energy development of renewable energy sources in the world. The application of new technologies that have led to developing renewable energy sources is presented in detail: wind energy, solar energy, small hydropower plants, biomass, and their increase in the total share of energy production, i.e., reduced fossil fuel use in energy production. Investments in new technologies used in renewable energy sources have led to increases in employment worldwide. Analysis of the trend of increased energy production from RES (Renewable Energy Sources) with investment plans, the employment rate for each energy source, and the development of renewable energy sources in the coming period are provided.


2021 ◽  
Vol 13 (21) ◽  
pp. 12235
Author(s):  
Peter Hemmings ◽  
Michael Mulheron ◽  
Richard J. Murphy ◽  
Matt Prescott

COVID-19 has had wide-ranging impacts on organisations with the potential to disrupt efforts to decarbonise their operations. To understand how COVID-19 has affected the climate change mitigation strategies of Airport Operators (AOs), questionnaires and semi-structured interviews with Sustainability Managers were undertaken in late 2020 amidst a period of disruption. While all reported that COVID-19 impacted delivery of interventions and projects to mitigate climate change, the majority stated that it would not impact their long-term climate goals, such as Net Zero by 2050. The most popular climate change mitigation interventions AOs intend to deploy between now and 2030 are on-site renewables and Electric Vehicles and related infrastructure. Engineered carbon removal interventions were considered highly unlikely to be deployed in this timeframe, with potential implications for Net Zero decarbonisation pathways. Despite the severe impacts of COVID-19 on the sector, results indicate that AOs remain committed to decarbonisation, with climate change action remaining the key priority for airports. Given ongoing financial and resource constraints, AOs will need to explore new business models and partnerships and nurture collaborative approaches with other aviation stakeholders to not only maintain progress toward Net Zero but “build back better”. Government support will also be needed to stimulate the development of a sustainable, resilient, low-carbon aviation system.


Sign in / Sign up

Export Citation Format

Share Document