State of the Climate Report: Suriname

2021 ◽  
Author(s):  
Kepa Solaun ◽  
Gerard Alleng ◽  
Adrián Flores ◽  
Chiquita Resomardono ◽  
Katharina Hess ◽  
...  

Suriname is highly vulnerable to the effects of climate change. Among the factors that exacerbate its vulnerability are its dependency on fossil fuels, the degradation of important ecosystems (e.g., mangroves), and the fact that 87% of the population, and most of the countrys economic activity is located within the low-lying coastal area. Many sectors are at risk of suffering losses and damage caused by gradual changes and extreme events related to climate change. For Suriname to develop sustainably, it should incorporate climate change and its effects into its decision-making process based on scientific- evidence. The State of the Climate Report analyzes Surinames historical climate (1990-2014) and provides climate projections for three time horizons (2020-2044, 2045-2069, 2070-2094) through two emissions scenarios (intermediate/ SSP2-4.5 and severe/ SSP5-8.5). The analysis focuses on changes in sea level, temperature, precipitation, relative humidity, and winds for the seven subnational locations of Paramaribo, Albina, Bigi Pan MUMA, Brokopondo, Kwamalasamutu, Tafelberg Natural Reserve, and Upper Tapanahony. The Report also analyzes climate risk for the countrys ten districts by examining the factors which increase their exposure and vulnerability on the four most important sectors affected by climate change: infrastructure, agriculture, water, and forestry, as well as examining the effects across the sectors. The State of the Climate Report provides essential inputs for Suriname to develop and update its climate change policies and targets. These policies and targets should enable an adequate mainstreaming of climate change adaptation and resilience enhancementinto day-to-day government operations. It is expected that the Report will catalyze similar efforts in the future to improve decision-making by providing science-based evidence.

2021 ◽  
Author(s):  
Kepa Solaun ◽  
Chiquita Resomardono ◽  
Katharina Hess ◽  
Helena Antich ◽  
Gerard Alleng ◽  
...  

Several factors contribute to Surinames particular vulnerability to the effects of climate change. It is dependent on fossil fuels, has forests liable to decay, fragile ecosystems, and its low-lying coastal area accounts for 87% of the population and most of the countrys economic activity. Many sectors are at risk of suffering losses and damage caused by gradual changes and extreme events related to climate change. For Suriname to develop sustainably, it should incorporate climate change and its effects into its decision-making process based on scientific- evidence. The State of the Climate Report analyzes Surinames historical climate (1990-2014) and provides climate projections for three time horizons (2020-2044, 2045-2069, 2070-2094) through two emissions scenarios (intermediate/ SSP2-4.5 and severe/ SSP5-8.5). The analysis focuses on changes in sea level, temperature, precipitation, relative humidity, and winds for the seven subnational locations of Paramaribo, Albina, Bigi Pan MUMA, Brokopondo, Kwamalasamutu, Tafelberg Natural Reserve, and Upper Tapanahony. The Report also analyzes climate risk for the countrys ten districts by examining the factors which increase their exposure and vulnerability on the four most important sectors affected by climate change: infrastructure, agriculture, water, and forestry, as well as examining the effects across the sectors. The State of the Climate provides essential inputs for Suriname to develop and update its climate change policies and targets. These policies and targets should serve as enablers for an adequate mainstreaming of climate change adaptation and resilience enhancement into day-to-day government operations.


2021 ◽  
Author(s):  
Thomas Noël ◽  
Harilaos Loukos ◽  
Dimitri Defrance

A high-resolution climate projections dataset is obtained by statistically downscaling climate projections from the CMIP6 experiment using the ERA5-Land reanalysis from the Copernicus Climate Change Service. This global dataset has a spatial resolution of 0.1°x 0.1°, comprises 5 climate models and includes two surface daily variables at monthly resolution: air temperature and precipitation. Two greenhouse gas emissions scenarios are available: one with mitigation policy (SSP126) and one without mitigation (SSP585). The downscaling method is a Quantile Mapping method (QM) called the Cumulative Distribution Function transform (CDF-t) method that was first used for wind values and is now referenced in dozens of peer-reviewed publications. The data processing includes quality control of metadata according to the climate modelling community standards and value checking for outlier detection.


2021 ◽  
Vol 13 (23) ◽  
pp. 13404
Author(s):  
Georgios Tsantopoulos ◽  
Evangelia Karasmanaki

Humans have been using fossil fuels for centuries, and the development of fossil fuel technology reshaped society in lasting ways [...]


2020 ◽  
Author(s):  
Jason A. Lowe ◽  
Carol McSweeney ◽  
Chris Hewitt

<p>There is clear evidence that, even with the most favourable emission pathways over coming decades, there will be a need for society to adapt to the impacts of climate variability and change. To do this regional, national and local actors need up-to-date information on the changing climate with clear accompanying detail on the robustness of the information. This needs to be communicated to both public and private sector organisations, ideally as part of a process of co-developing solutions.</p><p>EUCP is an H2020 programme that began in December 2017 with the aim of researching and testing the provision of improved climate predictions and projections for Europe for the next 40+ years, and drawing on the expertise of researchers from a number of major climate research institutes across Europe. It is also engaging with users of climate change information through a multiuser forum (MUF) to ensure that what we learn will match the needs of the people who need if for decision making and planning.</p><p>The first big issue that EUCP seeks to address is how better to use ensembles of climate model projections, moving beyond the one-model-one-vote philosophy. Here, the aim is to better understand how model ensembles might be constrained or sub-selected, and how multiple strands of information might be combined into improved climate change narratives or storylines. The second area where EUCP is making progress is in the use of very high-resolution regional climate simulations that are capable of resolving aspects of atmospheric convection. Present day and future simulations from a new generation of regional models ae being analysed in EUCP and will be used in a number of relevant case studies. The third issue that EUCP will consider is how to make future simulations more seamless across those time scales that are most relevant user decision making. This includes generating a better understanding of predictability over time and its sources in initialised forecasts, and also how to transition from the initialised forecasts to longer term boundary forced climate projections.</p><p>This presentation will provide an overview of the challenges being addressed by EUCP and the approaches the project is using.</p><p><br><br></p><p> </p>


2021 ◽  
Author(s):  
◽  
Alyssa Ryan

<p>New Zealand wine is cultivated in cool climates that produce distinctive flavours and wine-styles, which are representative of the terroir of the region. The effects of climate change can impact the quality and quantity of winegrapes, and the production of premium wine. The aim of this research was to investigate adaptation planning in the New Zealand wine industry by evaluating winegrowers’ decision-making and perceptions of climate change. Research was conducted using primary survey data from New Zealand winegrowers and semi-structured interviews with winegrowers from three case study regions of Marlborough, Central Otago, and Hawke’s Bay. The study was designed to assess how climate change is understood throughout the industry, whether adaptation plans are being developed or employed and the barriers hindering winegrowers’ implementation of adaptation strategies. The results show that winegrowers are somewhat informed about climate change with some adaptation planning occurring. However, the majority of winegrowers have no plans to adapt to climate change. The uncertainty in the climate science and the availability of information were indicated as a barrier to adaptation planning. Winegrowers convey the need for regional information with a focus on reliable forecasting and climate projections for the next few years. The New Zealand wine industry is in a positive position to undertake adaptation with the opportunity to exploit the benefits of climate change for wine production.</p>


2020 ◽  
Author(s):  
Geeta G. Persad ◽  
Daniel L. Swain ◽  
Claire Kouba ◽  
J. Pablo Ortiz-Partida

Abstract Shifts away from the historical hydroclimate in populated regions can have dire consequences for water management. Regions like the state of California—where highly engineered, geographically interconnected, and inflexible water management systems are predicated on particular spatiotemporal patterns of water availability—are particularly vulnerable to hydroclimate shifts. However, much of the analysis of hydroclimate sensitivity to anthropogenic climate change has focused on gross metrics like annual mean precipitation, which is highly uncertain at the regional scale. This perceived uncertainty has deterred adaptation investments and quantitative integration of climate projection data into regional water management. Here, we assess projected future shifts in the state of California in a range of hydroclimate metrics critical to water management, using data from 10 statistically downscaled global climate model and two emissions scenarios currently used by the state. We find substantial inter-model agreement under both emissions scenarios—and > 80% inter-model agreement under the more severe climate change scenario—across metrics that collectively point toward an increasingly volatile, temporally concentrated, and extreme precipitation future for the state. We show, via hydrologic and operations modeling, that accounting for shifts in these more nuanced metrics reduces the projected reliability and sustainability of current water management practices to a greater degree than would be inferred from changes in total annual precipitation alone. These results highlight both the viability and critical importance of incorporating climate change projections quantitatively into water management decisions in California and other regions vulnerable to hydroclimate shifts, and underscore the need to develop integrated climate-hydrologic-operations models and decision-making protocols capable of accounting for all projected hydroclimate shifts.


2020 ◽  
Author(s):  
Carola Logan

Crises and conflicts over limited energy resources together with Europe's import dependency on fossil fuels and the challenges posed by climate change have increasingly put energy policy on the European agenda. EU energy policy and the Energy Union made remarkable progress during the second Barroso Commission and the Juncker Commission, even in areas that traditionally lie in the sphere of national decision-making. This book takes stock of the last two commissions and examines the influence of external factors as well as political actors and their ambitions on integration in the area of EU energy policy.


2020 ◽  
Author(s):  
John Clarke ◽  
Karl Braganza ◽  
Geoff Gooley ◽  
Michael Grose ◽  
Louise Wilson

&lt;p&gt;Australia is the World&amp;#8217;s driest inhabited continent. It is highly exposed to the impacts of climate change: surrounded by sensitive marine ecosystems including the Great Barrier Reef, vulnerable to tropical cyclones and changing monsoonal patterns in the north, experiencing declining rainfall and runoff in the heavily populated southern and eastern parts of the country, and subject to increasingly severe bushfires. The ever-present flood, drought and bushfire cycles have historically motivated government investment in programs that aim to understand the nation&amp;#8217;s climate and its drivers, and to inform adaptation planning and disaster risk management.&lt;/p&gt;&lt;p&gt;Accordingly, the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Bureau of Meteorology (BoM) have been at the forefront of understanding Australia&amp;#8217;s past and future climate for four decades.&lt;/p&gt;&lt;p&gt;The most recent national climate projections were published in 2015. These focussed on the needs of the natural resource management sector and represented a first step towards delivery of climate change services tailored to the sector&amp;#8217;s needs. Products included decision support tools and provision of training for capacity building. A key component of the research program was stakeholder engagement from inception. The resultant Climate Change in Australia website (www.climatechangeinaustralia.gov.au) and Help Desk represented the most ambitious steps to date towards a comprehensive Australian climate change service, and were a first attempt at user-driven information delivery.&lt;/p&gt;&lt;p&gt;Now five years on, users' needs have evolved substantially. Key drivers of this include: (1) the Paris Agreement (2015) to limit global temperature rise to below 2.0&amp;#176;C (ideally below 1.5&amp;#176;C) above pre-industrial levels, (2) implications of the Taskforce for Climate-related Financial Disclosures (TCFD, 2017), and (3) IPCC Special Reports. This has occurred on top of a trend towards increasingly sophisticated uses of climate projections datasets for decision-making. Existing products do not meet all user needs. There is a pronounced &amp;#8216;pull&amp;#8217; from users of climate projections for sector-specific &quot;decision-relevant&quot; information for risk-management decisions. The cross-jurisdictional impacts of climate change have also resulted in a need for authoritative, standardized and quality-assured climate scenarios for the entire country, to facilitate whole of sector, cross-agency and multi-sector responses and adaptation. As Lourenco et al (2016) said, climate change services for Australia need to shift from &amp;#8220;science-driven and user informed services to user-driven and science informed services.&amp;#8221;&lt;/p&gt;&lt;p&gt;There is increased emphasis on sector-specific tools that aim to provide decision-relevant information and underpinning datasets. An ongoing challenge is the need to enable the uptake of climate information in decision-making. This necessitates a skill uplift on the user side. To date, efforts have focused on the water, finance, energy, and indigenous land management sectors. Increasingly, the focus within Australia is on working together across jurisdictional boundaries to provide nationally consistent information; with enhanced transparency drawing upon climate science resources within universities and all levels of government. Strong partnerships with the private sector are also needed in order to deliver to burgeoning demand. Success will require genuine co-design, co-production and co-evaluation of sector-specific products with a suite of support services appropriate to the needs of diverse users.&lt;/p&gt;


2020 ◽  
pp. 251-258
Author(s):  
Anders Esmark

Taking up the case of climate change, the conclusion considers the argument for moretechnocracy in the face of ‘the end world as we know it’. Climate change is probably the strongest case for a technocratic model of political decision-making. At the very least, insufficient political adherence to the scientific evidence on climate change is an almost commonsensical part of the problem of in the current state of affairs. While fully acknowledging this problem, the chapter argues that attention to the destructive and mutually reinforcing interplay of technocracy and populism is necessary also in to the all-important challenge of climate change.


2020 ◽  
Vol 7 (11) ◽  
pp. 172
Author(s):  
Rey Ty

Longitudinal scientific evidence proves beyond any reasonable doubt that the problem of climate change is reaching a point of no return, upon which Earthly and human survival depends. The major contributors of climate change include industry, transportation, agriculture, and consumers, over which corporate globalization controls, which consume fossil fuels, such as oil, coal, and gas that produce greenhouse gases. Climate change impacts access to clean water, human health, forests, coastal areas, biodiversity, and agriculture. Our tasks ahead include: 1) exposing and opposing flawed economic, political, social, cultural, and security models that destroy nature, cause mal-development, and widening the gap between the rich and the poor and 2) proposing new cooperative models that put sustainability and equality—nature and people—first, especially the poor and the oppressed, before profits.


Sign in / Sign up

Export Citation Format

Share Document