Big Data Applications in Medical Field: A Literature Review

Author(s):  
Ibrahim Haleem Khan ◽  
Mohd Javaid

Digital imaging and medical reporting have acquired an essential role in healthcare, but the main challenge is the storage of a high volume of patient data. Although newer technologies are already introduced in the medical sciences to save records size, Big Data provides advancements by storing a large amount of data to improve the efficiency and quality of patient treatment with better care. It provides intelligent automation capabilities to reduce errors than manual inputs. Large numbers of research papers on big data in the medical field are studied and analyzed for their impacts, benefits, and applications. Big data has great potential to support the digitalization of all medical and clinical records and then save the entire data regarding the medical history of an individual or a group. This paper discusses big data usage for various industries and sectors. Finally, 12 significant applications for the medical field by the implementation of big data are identified and studied with a brief description. This technology can be gainfully used to extract useful information from the available data by analyzing and managing them through a combination of hardware and software. With technological advancement, big data provides health-related information for millions of patient-related to life issues such as lab tests reporting, clinical narratives, demographics, prescription, medical diagnosis, and related documentation. Thus, Big Data is essential in developing a better yet efficient analysis and storage healthcare services. The demand for big data applications is increasing due to its capability of handling and analyzing massive data. Not only in the future but even now, Big Data is proving itself as an axiom of storing, developing, analyzing, and providing overall health information to the physicians.

Author(s):  
Atis Verdenhofs ◽  
Ineta Geipele ◽  
Tatjana Tambovceva

Technological advancement has led to tremendous increase of data. Many industries utilize big data to become more efficient or even to create new products or services. Applications of big data in construction industry has been extensively researched in Asia that can be explained with huge construction volumes in the area. This study is aimed at identifying big data applications in construction industry in time period beyond 2016. Research object is construction industry, research subject is big data applications. Research methods used in this research are systematic literature overview and meta-analysis. Novelty of the research is classification of big data applications based on systematic literature overview. Authors conclude that existing categorization (Bilal et al., 2016b) can be applied to researches about big data applications in construction industry published in 2016 and later. However, potential for new applications is identified in category of emerging trends triggered by big data and authors propose to perform cross-industry analysis to identify solutions that can be adopted to construction industry.


Author(s):  
S. Karthiga Devi ◽  
B. Arputhamary

Today the volume of healthcare data generated increased rapidly because of the number of patients in each hospital increasing.  These data are most important for decision making and delivering the best care for patients. Healthcare providers are now faced with collecting, managing, storing and securing huge amounts of sensitive protected health information. As a result, an increasing number of healthcare organizations are turning to cloud based services. Cloud computing offers a viable, secure alternative to premise based healthcare solutions. The infrastructure of Cloud is characterized by a high volume storage and a high throughput. The privacy and security are the two most important concerns in cloud-based healthcare services. Healthcare organization should have electronic medical records in order to use the cloud infrastructure. This paper surveys the challenges of cloud in healthcare and benefits of cloud techniques in health care industries.


Author(s):  
Jonatan Enes ◽  
Guillaume Fieni ◽  
Roberto R. Exposito ◽  
Romain Rouvoy ◽  
Juan Tourino

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Mahdi Torabzadehkashi ◽  
Siavash Rezaei ◽  
Ali HeydariGorji ◽  
Hosein Bobarshad ◽  
Vladimir Alves ◽  
...  

AbstractIn the era of big data applications, the demand for more sophisticated data centers and high-performance data processing mechanisms is increasing drastically. Data are originally stored in storage systems. To process data, application servers need to fetch them from storage devices, which imposes the cost of moving data to the system. This cost has a direct relation with the distance of processing engines from the data. This is the key motivation for the emergence of distributed processing platforms such as Hadoop, which move process closer to data. Computational storage devices (CSDs) push the “move process to data” paradigm to its ultimate boundaries by deploying embedded processing engines inside storage devices to process data. In this paper, we introduce Catalina, an efficient and flexible computational storage platform, that provides a seamless environment to process data in-place. Catalina is the first CSD equipped with a dedicated application processor running a full-fledged operating system that provides filesystem-level data access for the applications. Thus, a vast spectrum of applications can be ported for running on Catalina CSDs. Due to these unique features, to the best of our knowledge, Catalina CSD is the only in-storage processing platform that can be seamlessly deployed in clusters to run distributed applications such as Hadoop MapReduce and HPC applications in-place without any modifications on the underlying distributed processing framework. For the proof of concept, we build a fully functional Catalina prototype and a CSD-equipped platform using 16 Catalina CSDs to run Intel HiBench Hadoop and HPC benchmarks to investigate the benefits of deploying Catalina CSDs in the distributed processing environments. The experimental results show up to 2.2× improvement in performance and 4.3× reduction in energy consumption, respectively, for running Hadoop MapReduce benchmarks. Additionally, thanks to the Neon SIMD engines, the performance and energy efficiency of DFT algorithms are improved up to 5.4× and 8.9×, respectively.


Author(s):  
Bernard Tuffour Atuahene ◽  
Sittimont Kanjanabootra ◽  
Thayaparan Gajendran

Big data applications consist of i) data collection using big data sources, ii) storing and processing the data, and iii) analysing data to gain insights for creating organisational benefit. The influx of digital technologies and digitization in the construction process includes big data as one newly emerging digital technology adopted in the construction industry. Big data application is in a nascent stage in construction, and there is a need to understand the tangible benefit(s) that big data can offer the construction industry. This study explores the benefits of big data in the construction industry. Using a qualitative case study design, construction professionals in an Australian Construction firm were interviewed. The research highlights that the benefits of big data include reduction of litigation amongst projects stakeholders, enablement of near to real-time communication, and facilitation of effective subcontractor selection. By implication, on a broader scale, these benefits can improve contract management, procurement, and management of construction projects. This study contributes to an ongoing discourse on big data application, and more generally, digitization in the construction industry.


2020 ◽  
Vol 17 (12) ◽  
pp. 5605-5612
Author(s):  
A. Kaliappan ◽  
D. Chitra

In today’s world, an immense measure of information in the form of unstructured, semi-structured and unstructured is generated by different sources all over the world in a tremendous amount. Big data is the termed coined to address these enormous amounts of data. One of the major challenges in the health sector is handling a high-volume variety of data generated from diverse sources and utilizing it for the wellbeing of human. Big data analytics is one of technique designed to operate with monstrous measures of information. The impact of big data in healthcare field and utilization of Hadoop system tools for supervising the big data are deliberated in this paper. The big data analytics role and its theoretical and conceptual architecture include the gathering of diverse information’s such as electronic health records, genome database and clinical decisions support systems, text representation in health care industry is investigated in this paper.


Sign in / Sign up

Export Citation Format

Share Document