Computational design of a potential therapeutic peptide against spike protein of SARS-CoV-2

Author(s):  
Abbas Alibakhshi ◽  
Shahrzad Ahangarzadeh ◽  
Leila Beikmohammadi ◽  
Behnoush Soltanmohammadi ◽  
Armina Alagheband Bahrami ◽  
...  
Drugs in R&D ◽  
2021 ◽  
Author(s):  
Sajjan Rajpoot ◽  
Tomokazu Ohishi ◽  
Ashutosh Kumar ◽  
Qiuwei Pan ◽  
Sreeparna Banerjee ◽  
...  

Author(s):  
Veda Sheersh Boorla ◽  
Ratul Chowdhury ◽  
Costas D. Maranas

AbstractThe emergence of SARS-CoV-2 is responsible for the pandemic of respiratory disease known as COVID-19, which emerged in the city of Wuhan, Hubei province, China in late 2019. Both vaccines and targeted therapeutics for treatment of this disease are currently lacking. Viral entry requires binding of the viral spike receptor binding domain (RBD) with the human angiotensin converting enzyme (hACE2). In an earlier paper1, we report on the specific residue interactions underpinning this event. Here we report on the de novo computational design of high affinity antibody variable regions through the recombination of VDJ genes targeting the most solvent-exposed hACE2-binding residues of the SARS-CoV-2 spike protein using the software tool OptMAVEn-2.02. Subsequently, we carry out computational affinity maturation of the designed prototype variable regions through point mutations for improved binding with the target epitope. Immunogenicity was restricted by preferring designs that match sequences from a 9-mer library of “human antibodies” based on H-score (human string content, HSC)3. We generated 106 different designs and report in detail on the top five that trade-off the greatest affinity for the spike RBD epitope (quantified using the Rosetta binding energies) with low H-scores. By grafting the designed Heavy (VH) and Light (VL) chain variable regions onto a human framework (Fc), high-affinity and potentially neutralizing full-length monoclonal antibodies (mAb) can be constructed. Having a potent antibody that can recognize the viral spike protein with high affinity would be enabling for both the design of sensitive SARS-CoV-2 detection devices and for their deployment as therapeutic antibodies.


Author(s):  
Pranam Chatterjee ◽  
Manvitha Ponnapati ◽  
Joseph M. Jacobson

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has elicited a global health crisis of catastrophic proportions. With no approved cure or vaccine currently available, there is a critical need for effective antiviral strategies. In this study, we report a novel antiviral platform, through computational design of ACE2-derived peptides which both target the viral spike protein receptor binding domain (RBD) and recruit E3 ubiquitin ligases for subsequent intracellular degradation of SARS-CoV-2 in the proteasome. Our engineered peptide fusions demonstrate robust RBD degradation capabilities in human cells, thus prompting their further experimental characterization and therapeutic development.


Author(s):  
Xiaoqiang Huang ◽  
Robin Pearce ◽  
Yang Zhang

ABSTRACTThe outbreak of COVID-19 has now become a global pandemic and it continues to spread rapidly worldwide, severely threatening lives and economic stability. Making the problem worse, there is no specific antiviral drug that can be used to treat COVID-19 to date. SARS-CoV-2 initiates its entry into human cells by binding to angiotensin-converting enzyme 2 (hACE2) via the receptor binding domain (RBD) of its spike protein. Therefore, molecules that can block SARS-CoV-2 from binding to hACE2 may potentially prevent the virus from entering human cells and serve as an effective antiviral drug. Based on this idea, we designed a series of peptides that can strongly bind to SARS-CoV-2 RBD in computational experiments. Specifically, we first constructed a 31-mer peptidic scaffold by linking two fragments grafted from hACE2 (a.a. 22-44 and 351-357) with a linker glycine, and then redesigned the peptide sequence to enhance its binding affinity to SARS-CoV-2 RBD. Compared with several computational studies that failed to identify that SARS-CoV-2 shows higher binding affinity for hACE2 than SARS-CoV, our protein design scoring function, EvoEF2, makes a correct identification, which is consistent with the recently reported experimental data, implying its high accuracy. The top designed peptide binders exhibited much stronger binding potency to hACE2 than the wild-type (−53.35 vs. −46.46 EvoEF2 energy unit for design and wild-type, respectively). The extensive and detailed computational analyses support the high reasonability of the designed binders, which not only recapitulated the critical native binding interactions but also introduced new favorable interactions to enhance binding. Due to the urgent situation created by COVID-19, we share these computational data to the community, which should be helpful to develop potential antiviral peptide drugs to combat this pandemic.


2020 ◽  
Author(s):  
Cristina Garcia-Iriepa ◽  
Cecilia Hognon ◽  
Antonio Francés-Monerris ◽  
Isabel Iriepa ◽  
Tom Miclot ◽  
...  

<div><p>Since the end of 2019, the coronavirus SARS-CoV-2 has caused more than 180,000 deaths all over the world, still lacking a medical treatment despite the concerns of the whole scientific community. Human Angiotensin-Converting Enzyme 2 (ACE2) was recently recognized as the transmembrane protein serving as SARS-CoV-2 entry point into cells, thus constituting the first biomolecular event leading to COVID-19 disease. Here, by means of a state-of-the-art computational approach, we propose a rational evaluation of the molecular mechanisms behind the formation of the complex and of the effects of possible ligands. Moreover, binding free energy between ACE2 and the active Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein is evaluated quantitatively, assessing the molecular mechanisms at the basis of the recognition and the ligand-induced decreased affinity. These results boost the knowledge on the molecular grounds of the SARS-CoV-2 infection and allow to suggest rationales useful for the subsequent rational molecular design to treat severe COVID-19 cases.</p></div>


2020 ◽  
Author(s):  
Sanaa Bardaweel

Recently, an outbreak of fatal coronavirus, SARS-CoV-2, has emerged from China and is rapidly spreading worldwide. As the coronavirus pandemic rages, drug discovery and development become even more challenging. Drug repurposing of the antimalarial drug chloroquine and its hydroxylated form had demonstrated apparent effectiveness in the treatment of COVID-19 associated pneumonia in clinical trials. SARS-CoV-2 spike protein shares 31.9% sequence identity with the spike protein presents in the Middle East Respiratory Syndrome Corona Virus (MERS-CoV), which infects cells through the interaction of its spike protein with the DPP4 receptor found on macrophages. Sitagliptin, a DPP4 inhibitor, that is known for its antidiabetic, immunoregulatory, anti-inflammatory, and beneficial cardiometabolic effects has been shown to reverse macrophage responses in MERS-CoV infection and reduce CXCL10 chemokine production in AIDS patients. We suggest that Sitagliptin may be beneficial alternative for the treatment of COVID-19 disease especially in diabetic patients and patients with preexisting cardiovascular conditions who are already at higher risk of COVID-19 infection.


Sign in / Sign up

Export Citation Format

Share Document