Growth Processes of Nanoparticles in Liquid-Phase Laser Ablation Studied by Laser-Light Scattering

2010 ◽  
Vol 3 (3) ◽  
pp. 035201 ◽  
Author(s):  
Wafaa Soliman ◽  
Noriharu Takada ◽  
Koichi Sasaki
2005 ◽  
Vol 873 ◽  
Author(s):  
Elaine DiMasi ◽  
Tianbo Liu ◽  
Matthew J. Olszta ◽  
Laurie B. Gower

AbstractA Polymer-Induced Liquid-Precursor (PILP) process for mineralization of calcium carbonate has been studied in-situ by laser light scattering. Static and dynamic light scattering data were obtained from CaCl2 solutions containing poly(aspartic acid). Under these conditions calcium carbonate mineralizes through a liquid droplet precursor phase when the solution is exposed to the decomposition products of ammonium carbonate. Our measurements probe the integrated scatterer mass and the apparent hydrodynamic radius Rh,app of the droplets as they nucleate and coalesce. The data reveal three stages in the formation of the PILP phase: an early stage of droplet growth to Rh,app ≈ 250 nm; a mid-time stage of fluctuations and polydispersity in particle size; and a final growth period where Rh,app increases from 350 nm to the micron scale. Aggregation of precursor droplets, rather than atom-by-atom growth, is the dominant mechanism of mineral formation under these conditions. With respect to biomineralization, this first observation of 100-nm-scale droplets is significant, implying a possibility to mineralize from the liquid phase within the nanoscale compartments in which many biominerals form.


1993 ◽  
Vol 324 ◽  
Author(s):  
C. Pickering ◽  
D.A.O. Hope ◽  
W.Y. Leong ◽  
D.J. Robbins ◽  
R. Greef

AbstractIn-situ dual-wavelength ellipsometry and laser light scattering have been used to monitor growth of Si/Si1−x,Gex heterojunction bipolar transistor and multi-quantum well (MQW) structures. The growth rate of B-doped Si0 8Ge0.2 has been shown to be linear, but that of As-doped Si is non-linear, decreasing with time. Refractive index data have been obtained at the growth temperature for x = 0.15, 0.20, 0.25. Interface regions ∼ 6-20Å thickness have been detected at hetero-interfaces and during interrupted alloy growth. Period-to-period repeatability of MQW structures has been shown to be ±lML.


Sign in / Sign up

Export Citation Format

Share Document