Optimum Growth Conditions of Ge–Sb–Te Alloy Thin Film Investigated by Ellipsometry

2004 ◽  
Vol 43 (3) ◽  
pp. 1006-1012 ◽  
Author(s):  
Sung Hyuck An ◽  
Xuezhe Li ◽  
Sang Youl Kim
Author(s):  
Peng Lei ◽  
Congchun Zhang ◽  
Yawen Pang ◽  
Shenyong Yang ◽  
Meiju Zhang

2019 ◽  
Vol 82 (6) ◽  
pp. 1071-1081
Author(s):  
KRISTIN BJORNSDOTTIR-BUTLER ◽  
SUSAN McCARTHY ◽  
RONALD A. BENNER

ABSTRACT Histamine-producing Erwinia and Pluralibacter spp. capable of producing toxic histamine levels were isolated from ingredients commonly used in tuna salad preparations. The characterization and control of these histamine-producing bacteria are necessary to prevent illness from tuna salad consumption. We confirmed the identity of two Erwinia spp. and one Pluralibacter sp. previously isolated from tuna salad ingredients through whole genome sequencing and phylogenic analysis and characterized them for growth and histamine production at different temperatures, pH values, and salt concentrations. In addition, we examined the effects of dried vinegar (DV) powder on growth and histamine production of these strains in inoculated tuna salad preparations. Optimum growth temperatures in tryptic soy broth (TSB) for the two Erwinia spp. and one Pluralibacter sp. were 30.1, 31.1, and 33.9°C, respectively, and growth in TSB was observed at 5°C for both genera. Optimum histamine production of Erwinia persicina, Erwinia spp., and Pluralibacter spp. in TSB with histidine occurred from 25 to 30°C, pH 4 to 6, and 0 to 4% NaCl. No significant growth or histamine production was observed in tuna salad preparations stored at 4°C. Growth and histamine production by Erwinia or Pluralibacter spp. was inhibited in tuna salad containing celery and onion and 2% DV, whereas significant growth and histamine production occurred in tuna salad without DV. Understanding optimum growth conditions and histamine production can provide guidance to tuna salad manufacturers in formulating products and adjusting processing conditions that minimize hazards from these histamine-producing bacteria. Addition of 2% DV to tuna salad preparations may prevent histamine production in the event of temperature abuse. HIGHLIGHTS


1992 ◽  
Vol 285 ◽  
Author(s):  
S.H.H. Naqvi ◽  
M. Vickers ◽  
S. Tarling ◽  
P. Barnes ◽  
I.W. Boyd

ABSTRACTThe lead based superconductor Pb2Sr2Y0.5Ca0.5Cu3O8+δ is a most complex material. If any oxygen is present in the PbO-CuOδ-PbO sandwich layer (i.e. if δ>0) the superconductivity deteriorates. This is also a most difficult material to grow not only because of the large number of cation stoichiometries which have to be precisely balanced but also because of the tendency for multiple phases to form. Pulsed laser deposition (PLD) has been applied to prepare thin films of the 2213-phase on MgO (100) single crystal substrates at low temperature (300°C) in low oxidizing atmospheres. A basic set of ex-situ growth conditions has been determined which produce for the first time good quality films of this material as characterized by DC resistivity using the Van der Pauw method, as well as EDX and XRD. The layers are reasonably c-axis oriented and display a superconducting onset transition temperature of 79K and zero resistance at 65K after subsequent annealing in a nitrogen ambient.


MRS Bulletin ◽  
1990 ◽  
Vol 15 (3) ◽  
pp. 45-52 ◽  
Author(s):  
A.M. Homola ◽  
C.M. Mate ◽  
G.B. Street

Metallic alloy thin film media and ever decreasing head-to-media spacing make severe demands on storage devices. Decreasing head-to-media separation is critical for high storage densities but it also leads to increased slider-disk interactions, which can cause slider and disk wear or even head crashes. Wear can also occur when drives start and stop when the slider contacts the disk at relatively high speeds. The reliability and durability of thin film disks, which provide much higher areal density than conventional oxide disks with particulate media, are achieved by the use of very thin overcoat materials and surface lubricants. This article summarizes the approaches taken in the industry to enhance the tribological performance of magnetic media, with special emphasis on the basic understanding of the processes occurring at the slider-disk interface.The continuous rise in the demand for storage capacity at a competitive price is the prime motivator of the changes we have seen in the data storage industry. It is clearly stimulating the present move away from particulate media, which has long dominated all fields of data storage, i.e., tape, rigid, and flexible disks, to the thin film storage media. Particulate storage devices use magnetic media formulated by dispersing magnetic particles, usually iron oxides, in an organic binder. In thin film storage devices, the storage medium is a continuous magnetic film, usually a cobalt alloy, made either by sputtering or by electroless plating.


2021 ◽  
Vol MA2021-01 (18) ◽  
pp. 797-797
Author(s):  
Shaukat Ali Lone ◽  
Cezarina Cela Mardare ◽  
Andrei Ionut Mardare ◽  
Achim Walter Hassel

Sign in / Sign up

Export Citation Format

Share Document