Hydrogen-Bond Nature Studied by X-ray and Neutron Structure Analyses of MeHPLN at Room Temperature

2003 ◽  
Vol 72 (11) ◽  
pp. 2816-2821 ◽  
Author(s):  
R. Kiyanagi ◽  
A. Kojima ◽  
T. Hayashide ◽  
H. Kimura ◽  
M. Watanabe ◽  
...  
2020 ◽  
Vol 151 (9) ◽  
pp. 1317-1328
Author(s):  
Matthias Weil ◽  
Berthold Stöger

Abstract The caesium phosphates Cs3(H1.5PO4)2(H2O)2 and Cs3(H1.5PO4)2 were obtained from aqueous solutions, and Cs4P2O7(H2O)4 and CsPO3 from solid state reactions, respectively. Cs3(H1.5PO4)2, Cs4P2O7(H2O)4, and CsPO3 were fully structurally characterized for the first time on basis of single-crystal X-ray diffraction data recorded at − 173 °C. Monoclinic Cs3(H1.5PO4)2 (Z = 2, C2/m) represents a new structure type and comprises hydrogen phosphate groups involved in the formation of a strong non-symmetrical hydrogen bond (accompanied by a disordered H atom over a twofold rotation axis) and a very strong symmetric hydrogen bond (with the H atom situated on an inversion centre) with symmetry-related neighbouring anions. Triclinic Cs4P2O7(H2O)4 (Z = 2, P$$\bar{1}$$ 1 ¯ ) crystallizes also in a new structure type and is represented by a diphosphate group with a P–O–P bridging angle of 128.5°. Although H atoms of the water molecules were not modelled, O···O distances point to hydrogen bonds of medium strengths in the crystal structure. CsPO3 is monoclinic (Z = 4, P21/n) and belongs to the family of catena-polyphosphates (MPO3)n with a repetition period of 2. It is isotypic with the room-temperature modification of RbPO3. The crystal structure of Cs3(H1.5PO4)2(H2O)2 was re-evaluated on the basis of single-crystal X-ray diffraction data at − 173 °C, revealing that two adjacent hydrogen phosphate anions are connected by a very strong and non-symmetrical hydrogen bond, in contrast to the previously described symmetrical bonding situation derived from room temperature X-ray diffraction data. In the four title crystal structures, coordination numbers of the caesium cations range from 7 to 12. Graphic abstract


Author(s):  
Lorenzo Gontrani ◽  
Pietro Tagliatesta ◽  
Antonio Agresti ◽  
Sara Pescetelli ◽  
Marilena Carbone

In this study, we report a detailed experimental and theoretical investigation of three glycols, namely ethane-1,2-diol, 2-methoxyethan-1-ol and 1,2-dimethoxy ethane. For the first time, the X-Ray spectra of the latter two liquids was measured at room temperature, and they were compared with the newly measured spectrum of ethane-1,2-diol. The experimental diffraction patterns were interpreted very satisfactorily with molecular dynamics calculations, and suggest that in liquid ethane-1,2-diol most molecules are found in gauche conformation, with intramolecular hydrogen bond between the two hydroxyl groups. Intramolecular H-bonds are established in the mono-alkylated diol, but the interaction is weaker. The EDXD study also evidences strong intermolecular hydrogen-bond interactions, with short O···O correlations in both systems, while longer methyl-methyl interactions are found in 1,2-dimethoxy ethane. X-Ray studies are complemented by micro Raman investigations at room temperature and at 80°C, that confirm the conformational analysis predicted by X-Ray experiments and simulations.


2017 ◽  
Vol 81 (5) ◽  
pp. 1063-1071 ◽  
Author(s):  
Fabrizio Nestola ◽  
Anatoly V. Kasatkin ◽  
Sergey S. Potapov ◽  
Olga YA. Chervyatsova ◽  
Arianna Lanza

AbstractThis study presents the first crystal-structure determination of natural MgCO3·5H2O, mineral lansfordite, in comparison with previous structural works performed on synthetic analogues. A new prototype single-crystal X-ray diffractometer allowed us to measure an extremely small crystal (i.e. 0.020 mm × 0.010 mm × 0.005 mm) and refine anisotropically all non-hydrogen atoms in the structure and provide a robust hydrogen-bond arrangement. Our new data confirm that natural lansfordite can be stable for several months at room temperature, in contrast with previous works, which reported that such a mineral could be stable only below 10°C.


1979 ◽  
Vol 57 (19) ◽  
pp. 2640-2645 ◽  
Author(s):  
J. Umemura ◽  
G. I. Birnbaum ◽  
D. R. Bundle ◽  
W. F. Murphy ◽  
H. J. Bernstein ◽  
...  

The Raman and infrared spectra of crystalline methyl 3,6-dideoxy-β-D-ribo-hexopyranoside monohydrate in the O—H stretching region have been studied at room temperature and lower temperatures. Four bands have been identified and correlated with the corresponding O … O distances of the four distinct hydrogen bonds obtained from X-ray data. The assignments were substantiated by a deuterium isotopic dilution study.


1992 ◽  
Vol 47 (10) ◽  
pp. 1370-1376 ◽  
Author(s):  
Reinhold Tacke ◽  
Frank Wiesenberger ◽  
Angel Lopez-Mras ◽  
Jörg Sperlich ◽  
Günter Mattern

The zwitterionic λ5-spirosilicates bis[1,2-benzenediolato(2–)][2-(dimethylammonio)-phenyl]silicate (4) and bis [2,3-naphthalenediolato(2–)][2-(dimethylammonio)phenyl]silicate (5; isolated as 5 · ½CH3CN) were synthesized and the crystal structure of 4 was studied by X-ray diffraction. 4 was prepared by reaction of [2-(dimethylamino)phenyl]trimethoxysilane (7) or bis[2-(dimethylamino)phenyl]dimethoxysilane (8) with 1,2-dihydroxybenzene in acetonitrile at room temperature. 5 was synthesized analogously by reaction of 7 or 8 with 2,3-dihydroxynaphthalene. The silanes 7 and 8 were obtained by reaction of tetramethoxysilane (6) with [2-(dimethylamino)phenyl]lithium. The reactions 8 → 4 and 8 → 5 involve a remarkable Si–C cleavage leading to the formation of (dimethylamino)benzene. The pentacoordinate silicon atoms of 4 and 5 are surrounded by four oxygen atoms and one sp2 hybridized carbon atom. The coordination polyhedron of 4 can be described as a distorted square pyramid, the carbon atom being in the apical position (the structure is distorted by 69,1 % from the trigonal bipyramid towards the square pyramid). In the crystal, 4 forms an intramolecular N-H···O hydrogen bond.


1997 ◽  
Vol 52 (4) ◽  
pp. 490-495 ◽  
Author(s):  
Stefan Horstmann ◽  
Wolfgang Schnick

Abstract (NH2)2P(S)N=P(NH2)3 has been prepared by a two step synthesis. Suitable single crystals were obtained from an acetonitrile solution in a temperature gradient between 60 °C and room temperature. The crystal structure of (NH2)2P(S)N=P(NH2)3 has been determined by single crystal X-ray methods (P21/c, a = 998.27(9) b = 762.78(8), c = 1007.70(15) pm, β = 107.340(7)°, Z = 4). In the crystal structure each hydrogen atom is subject to a hydrogen bond. Four N-H -N hydrogen bonding interactions per molecule build up a framework connecting two molecules in eight-membered rings. Each sulfur atom shows six distances N-H···S in the range of weak hydrogen bonding interactions.


IUCrJ ◽  
2016 ◽  
Vol 3 (5) ◽  
pp. 319-325 ◽  
Author(s):  
Mayank Aggarwal ◽  
Andrey Y. Kovalevsky ◽  
Hector Velazquez ◽  
S. Zoë Fisher ◽  
Jeremy C. Smith ◽  
...  

Carbonic anhydrases (CAs; EC 4.2.1.1) catalyze the interconversion of CO2and HCO3−, and their inhibitors have long been used as diuretics and as a therapeutic treatment for many disorders such as glaucoma and epilepsy. Acetazolamide (AZM) and methazolamide (MZM, a methyl derivative of AZM) are two of the classical CA inhibitory drugs that have been used clinically for decades. The jointly refined X-ray/neutron structure of MZM in complex with human CA isoform II (hCA II) has been determined to a resolution of 2.2 Å with anRcrystof ∼16.0%. Presented in this article, along with only the second neutron structure of a clinical drug-bound hCA, is an in-depth structural comparison and analyses of differences in hydrogen-bonding network, water-molecule orientation and solvent displacement that take place upon the binding of AZM and MZM in the active site of hCA II. Even though MZM is slightly more hydrophobic and displaces more waters than AZM, the overall binding affinity (Ki) for both of the drugs against hCA II is similar (∼10 nM). The plausible reasons behind this finding have also been discussed using molecular dynamics and X-ray crystal structures of hCA II–MZM determined at cryotemperature and room temperature. This study not only allows a direct comparison of the hydrogen bonding, protonation states and solvent orientation/displacement of AZM and MZM, but also shows the significant effect that the methyl derivative has on the solvent organization in the hCA II active site.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Author(s):  
Vinci Mizuhira ◽  
Hiroshi Hasegawa

Microwave irradiation (MWI) was applied to 0.3 to 1 cm3 blocks of rat central nervous system at 2.45 GHz/500W for about 20 sec in a fixative, at room temperature. Fixative composed of 2% paraformaldehyde, 0.5% glutaraldehyde in 0.1 M cacodylate buffer at pH 7.4, also contained 2 mM of CaCl2 , 1 mM of MgCl2, and 0.1% of tannic acid for conventional observation; and fuether 30-90 mM of potassium oxalate containing fixative was applied for the detection of calcium ion localization in cells. Tissue blocks were left in the same fixative for 30 to 180 min after MWI at room temperature, then proceeded to the sampling procedure, after postfixed with osmium tetroxide, embedded in Epon. Ultrathin sections were double stained with an useal manner. Oxalate treated sections were devided in two, stained and unstained one. The later oxalate treated unstained sections were analyzed with electron probe X-ray microanalyzer, the EDAX-PU-9800, at 40 KV accelerating voltage for 100 to 200 sec with point or selected area analyzing methods.


Author(s):  
K.B. Reuter ◽  
D.B. Williams ◽  
J.I. Goldstein

In the Fe-Ni system, although ordered FeNi and ordered Ni3Fe are experimentally well established, direct evidence for ordered Fe3Ni is unconvincing. Little experimental data for Fe3Ni exists because diffusion is sluggish at temperatures below 400°C and because alloys containing less than 29 wt% Ni undergo a martensitic transformation at room temperature. Fe-Ni phases in iron meteorites were examined in this study because iron meteorites have cooled at slow rates of about 10°C/106 years, allowing phase transformations below 400°C to occur. One low temperature transformation product, called clear taenite 2 (CT2), was of particular interest because it contains less than 30 wtZ Ni and is not martensitic. Because CT2 is only a few microns in size, the structure and Ni content were determined through electron diffraction and x-ray microanalysis. A Philips EM400T operated at 120 kV, equipped with a Tracor Northern 2000 multichannel analyzer, was used.


Sign in / Sign up

Export Citation Format

Share Document