scholarly journals Chapter 16 Geohazards caused by gypsum and anhydrite in the UK: including dissolution, subsidence, sinkholes and heave

2020 ◽  
Vol 29 (1) ◽  
pp. 403-423 ◽  
Author(s):  
Anthony H. Cooper

AbstractGypsum and anhydrite are both soluble minerals that form rocks that can dissolve at the surface and underground, producing sulphate karst and causing geological hazards, especially subsidence and sinkholes. The dissolution rates of these minerals are rapid and cavities/caves can enlarge and collapse on a human time scale. In addition, the hydration and recrystallization of anhydrite to gypsum can cause considerable expansion and pressures capable of causing uplift and heave. Sulphate-rich water associated with the deposits can react with concrete and be problematic for construction. This paper reviews the occurrence of gypsum and anhydrite in the near surface of the UK and looks at methods for mitigating, avoiding and planning for the problems associated with these rocks.

2012 ◽  
Vol 69 (11) ◽  
pp. 3097-3115 ◽  
Author(s):  
B. J. H. Van de Wiel ◽  
A. F. Moene ◽  
H. J. J. Jonker

Abstract The mechanism behind the collapse of turbulence in the evening as a precursor to the onset of the very stable boundary layer is investigated. To this end a cooled, pressure-driven flow is investigated by means of a local similarity model. Simulations reveal a temporary collapse of turbulence whenever the surface heat extraction, expressed in its nondimensional form h/L, exceeds a critical value. As any temporary reduction of turbulent friction is followed by flow acceleration, the long-term state is unconditionally turbulent. In contrast, the temporary cessation of turbulence, which may actually last for several hours in the nocturnal boundary layer, can be understood from the fact that the time scale for boundary layer diffusion is much smaller than the time scale for flow acceleration. This limits the available momentum that can be used for downward heat transport. In case the surface heat extraction exceeds the so-called maximum sustainable heat flux (MSHF), the near-surface inversion rapidly increases. Finally, turbulent activity is largely suppressed by the intense density stratification that supports the emergence of a different, calmer boundary layer regime.


2016 ◽  
Author(s):  
Carlos Ordóñez ◽  
David Barriopedro ◽  
Ricardo García-Herrera ◽  
Pedro M. Sousa ◽  
Jordan L. Schnell

Abstract. This paper analyses for the first time the impact of high-latitude blocks and subtropical ridges on near-surface ozone in Europe during a 15-year period. For this purpose, a catalogue of blocks and ridges over the Euro-Atlantic region is used together with a gridded dataset of maximum daily 8-hour running average ozone (MDA8 O3) covering the period 1998–2012. The response of ozone to the location of blocks and ridges with centres in three longitudinal sectors (Atlantic, ATL, 30º–0º W; European, EUR, 0º–30º E; Russian, RUS, 30º–60º E) is examined. The impact of blocks on ozone is regionally and seasonally dependent. In particular, blocks within the EUR sector yield positive ozone anomalies of ~ 5–10 ppb over large parts of central Europe in spring and northern Europe in summer. Over 20 % and 30 % of the days with blocks in that sector register exceedances of the 90th percentile of the seasonal ozone distribution at many European locations during spring and summer, respectively. The impacts of ridges during those seasons are subtle and more sensitive to their specific location, although they can trigger ozone anomalies of ~ 5–10 ppb in Italy and the surrounding countries in summer, eventually exceeding European air quality targets. During winter, surface ozone in the northwest of Europe presents completely opposite responses to blocks and ridges. The anticyclonic circulation associated with winter EUR blocking, and to a lesser extent with ATL blocking, yields negative ozone anomalies between −5 ppb and −10 ppb over the UK, Northern France and the Benelux. Conversely, the enhanced zonal flow around 50˚–60˚ N during the occurrence of ATL ridges favours the arrival of background air masses from the Atlantic and the ventilation of the boundary layer, producing positive ozone anomalies above 5 ppb in an area spanning from the British Isles to Germany. This work provides the first quantitative assessments of the remarkable but distinct impacts that the anticyclonic circulation and the diversion of the zonal flow associated with blocks and ridges exert on surface ozone in Europe. The findings reported here can be exploited in the future to evaluate the modelled responses of ozone to circulation changes within chemical transport models (CTMs) and chemistry-climate models (CCMs).


Radiocarbon ◽  
1992 ◽  
Vol 34 (3) ◽  
pp. 528-532 ◽  
Author(s):  
E. M. Scott ◽  
D. D. Harkness ◽  
B. F. Miller ◽  
G. T. Cook ◽  
M. S. Baxter

Following recommendations of the Glasgow International Workshop on Intercomparison of Radiocarbon Laboratories (Scott, Long & Kra 1990), a further international intercomparison is planned. This new intercomparison is complementary to the existing IAEA intercalibration, and will make use of natural samples whose ages will be unknown to the participants. The study has been funded by the UK Research Councils (SERC and NERC), and samples will be free to all participants. We anticipate that this intercomparison will be ongoing, with distribution of samples in 1992, and presentation of the results at a later meeting. We present here details of the samples available and the time scale of the study. Briefly, we envisage that the new study will be more focused than the ICS (Scott et al. 1986), and will include natural samples in both pretreated and unpretreated forms.


2020 ◽  
Vol 29 (1) ◽  
pp. NP-NP
Author(s):  
D. P. Giles ◽  
J. S. Griffiths

The UK is perhaps unique globally in that it presents the full spectrum of geological time, stratigraphy and associated lithologies within its boundaries. With this wide range of geological assemblages comes a wide range of geological hazards, whether they be geophysical (earthquakes, effects of volcanic eruptions, tsunami, landslides), geotechnical (collapsible, compressible, liquefiable, shearing, swelling and shrinking soils), geochemical (dissolution, radon and methane gas hazards) or georesource related (coal, chalk and other mineral extraction). An awareness of these hazards and the risks that they pose is a key requirement of the engineering geologist.The Geological Society considered that a Working Party Report would help to put the study and assessment of geohazards into the wider social context, helping the engineering geologist to better communicate the issues concerning geohazards in the UK to the client and the public. This volume sets out to define and explain these geohazards, to detail their detection, monitoring and management and to provide a basis for further research and understanding.


2020 ◽  
Vol 29 (1) ◽  
pp. 243-257 ◽  
Author(s):  
Jeff Warburton

AbstractPeat is a highly compressible geological material whose time-dependent consolidation and rheological behaviour is determined by peat structure, degree of humification and hydraulic properties. This chapter reviews the engineering background to peat compression, describes the distribution of peat soils in the UK, provides examples of the hazards associated with compressible peat deposits and considers ways these hazards might be mitigated. Although some generalizations can be made about gross differences between broad peat types, no simple relationship exists between the magnitude and rate of compression of peat and loading. Based on examples described here, land failures resulting from peat compression are locally generated, but due to the sensitive nature of peat these can result in runaway failures that pose great risk. Understanding the geological hazards associated with compressible peat soils is challenging because peat is geotechnically highly variable and the mapped extent of peat in the UK is subject to considerable error due to inconsistencies in the definition of peat. Mitigating compression hazards in peat soils is therefore subject to considerable uncertainty; however, a combination of improved understanding of the properties of compressible peat, better mapping and land use zoning, and appropriate construction will help to mitigate risk.


1994 ◽  
Vol 353 ◽  
Author(s):  
Christopher A. Rochelle ◽  
Keith Bateman ◽  
Robert MacGregor ◽  
Jonathan M. Pearce ◽  
David Savage ◽  
...  

AbstractCurrent concepts of the geological disposal of low- and intermediate-level radioactive wastes in the UK envisage the construction of a mined facility (incorporating cementitious engineered barriers) in chlorite-bearing rocks. To model accurately the fluid-rock reactions within the ‘disturbed zone’ surrounding a repository requires functions that describe mineral dissolution kinetics under pH conditions that vary from near neutral to highly alkaline.Therefore, an experimental study to determine the dissolution rates of Fe-rich chlorite has been undertaken as part of the Nirex Safety Assessment Research Programme. Four experiments have been carried out at 25 °C and four at 70 °C, both sets using a range of NaCl/NaOH solutions of differing pH (of nominal pH 9.0,10.3, 11.6 and 13.0 [at 25 °C]).Dissolution rates have been calculated and were found to increase with increasing pH and temperature. However, increased pH resulted in non-stoichiometric dissolution possibly due to preferential dissolution of part of the chlorite structure relative to another, or reprecipitation of some elements as thin hydroxide or oxyhydroxide surface coatings on the chlorite.These results also show that chlorite dissolution is appreciably slower than that of albite and quartz at both 25 and 70 °C, but slightly faster than that of muscovite at 70 °C.


2019 ◽  
Vol 12 (9-10) ◽  
pp. 64-73
Author(s):  
V. K. Leksin ◽  
V. I. Samarin ◽  
P. N. Liskovyi

High-resolution 2D seismic is the main and optimal method in marine engineering geophysics, which for many years has worked well for the production of semi-submersible drilling rigs, self-lifting drilling rigs, construction of berthing facilities and bridges. The main objective of this method is to identify near-surface gas, faults, which are geological hazards. The method used for performing marine research is longitudinal profiling of reflected waves with a 48-fold overlap of the reflecting horizons. To obtain high-quality seismic migrated sections, we have previously developed a unified data processing algorithm for the offshore areas of the South-Kirinskoye oil and gas condensate field (Sakhalin shelf). More than 8,000 line km of seismic data were processed. The article presents the sequence of interpretation, as well as an analysis of the presence of hazards in the project wells (objects). To isolate potentially dangerous objects for each horizon, a dynamic analysis was carried out, which included the definition of the following parameters: maximum and minimum peak amplitude. The systematization and classification of amplitude anomalies was carried out according to such features as a phase change, frequency reduction, the presence of a supply channel and distortion (false deflection) of all underlying boundaries, indicating the possible presence of gas. The probable hazard levels for drilling operations were determined. All the identified anomalies in the process of interpreting seismic sections were mapped to the geological hazards to select the optimal and safe installation point for drilling a prospecting or exploration well.


2013 ◽  
Vol 70 (4) ◽  
pp. 1071-1083 ◽  
Author(s):  
Gilles Bellon ◽  
Bjorn Stevens

Abstract The adjustment of the trade wind atmospheric boundary layer to an abrupt sea surface warming is investigated using a large-eddy simulation (LES) and two simple bulk models: a mixed-layer model (MLM), and a model based on the mixing-line hypothesis (XLM). The near-surface temperature adjusts in a few hours, faster than can be expected from the characteristic time scales associated with the physical processes at play. The near-surface humidity adjusts more slowly, with a time scale of about a day, and it exhibits an initial decrease before increasing to its equilibrium value. An analysis of the MLM suggests that the initial tendency of humidity and temperature results from the difference in Bowen ratios between the equilibrium and the perturbation. An analysis of the three linear modes of the XLM shows that the fastest-decaying mode adjusts the subcloud-layer buoyancy, with a constructive interaction of all of the physical processes. The second-fastest-decaying mode is an adjustment of the boundary layer thermodynamical structure and the slowest mode adjusts the boundary layer depth. Approximate analytical expressions of the time scales characterizing these linear modes are derived both for the MLM and the XLM. The MLM exhibits no scale separation between the fastest and second-fastest time scales and a scale separation between these and the slowest time scale only in the case of a shallow well-mixed boundary layer. The XLM exhibits a scale separation between the buoyancy adjustment of the subcloud layer and the overall thermodynamic adjustment, while conserving the scale separation with the slower adjustment of the boundary layer depth.


2020 ◽  
Author(s):  
Tamzin Palmer ◽  
Carol Mc Sweeney ◽  
Ben Booth

<p>An alternative approach to constraining climate projections based on a probabilistic approach with observational constraints, is to select a subset of models from the ensemble based on their ability to represent key physical processes, along with some indicators of model performance. The method that is presented here is based on the assumption that if a model is unable to reproduce the key factors important for determining the regional climate, the projections from this model are not considered reliable. The projection range for CMIP5 for the three EUCP European regions is assessed using two different subsampled model ensembles.</p><p>The first sub-sampling method presented uses the approach of Mc Sweeney et al. (2015), which assessed the models based on their performance for the UK climate. Each model in the CMIP5 ensemble (where data is available), is firstly assessed against these key performance indicators and poor performers eliminated from the selection. Several models also share large portions of code and therefore have similar errors and projections, Sanderson et al 2015a and 2015b quantifies these similarities. This analysis was used identify ‘near-neighbours’ and further reduce the selection. The applicability of a sub-selection of models based on their performance for the UK climate is assessed for the wider European area and found to reduce the projected range for the Northern European Area (NEU), for precipitation and near surface temperature considerably. The impact on the projected ranges for the Central European Area (CEU) and the Mediterranean (MED) was not as large, suggesting that a different set of physical processes are of primary importance for these regions.</p><p>To further investigate the effect of subsampling based on physical processes, a subset of CMIP5 models identified by the approach of Vogel et al. (2018) has been applied for the EUCP European areas. Vogel et al. (2018) looked at the ability of the CMIP5 models to reproduce the correlation between the hottest day of the year and precipitation within the same range as that found in the observations. This approach is designed to subsample the ensemble based on the ability of the model to represent soil moisture feedback processes with the atmosphere. It is thought that these processes are likely to be increasingly important for determining the projected climate in the CEU and MED regions.  </p><p>Finally, the projection range for the CMIP6 ensemble in the EUCP regions for precipitation and the near surface temperature will be presented and compared with those for CMIP5.</p>


2014 ◽  
Vol 21 (1) ◽  
pp. 19-39 ◽  
Author(s):  
L. H. Baker ◽  
A. C. Rudd ◽  
S. Migliorini ◽  
R. N. Bannister

Abstract. In this paper ensembles of forecasts (of up to six hours) are studied from a convection-permitting model with a representation of model error due to unresolved processes. The ensemble prediction system (EPS) used is an experimental convection-permitting version of the UK Met Office's 24-member Global and Regional Ensemble Prediction System (MOGREPS). The method of representing model error variability, which perturbs parameters within the model's parameterisation schemes, has been modified and we investigate the impact of applying this scheme in different ways. These are: a control ensemble where all ensemble members have the same parameter values; an ensemble where the parameters are different between members, but fixed in time; and ensembles where the parameters are updated randomly every 30 or 60 min. The choice of parameters and their ranges of variability have been determined from expert opinion and parameter sensitivity tests. A case of frontal rain over the southern UK has been chosen, which has a multi-banded rainfall structure. The consequences of including model error variability in the case studied are mixed and are summarised as follows. The multiple banding, evident in the radar, is not captured for any single member. However, the single band is positioned in some members where a secondary band is present in the radar. This is found for all ensembles studied. Adding model error variability with fixed parameters in time does increase the ensemble spread for near-surface variables like wind and temperature, but can actually decrease the spread of the rainfall. Perturbing the parameters periodically throughout the forecast does not further increase the spread and exhibits "jumpiness" in the spread at times when the parameters are perturbed. Adding model error variability gives an improvement in forecast skill after the first 2–3 h of the forecast for near-surface temperature and relative humidity. For precipitation skill scores, adding model error variability has the effect of improving the skill in the first 1–2 h of the forecast, but then of reducing the skill after that. Complementary experiments were performed where the only difference between members was the set of parameter values (i.e. no initial condition variability). The resulting spread was found to be significantly less than the spread from initial condition variability alone.


Sign in / Sign up

Export Citation Format

Share Document