Chapter 4 The Loch Maree Group

2002 ◽  
Vol 26 (1) ◽  
pp. 29-44

The supracrustal rocks of the Loch Maree Group (LMG) consist of a variety of metasedimentary rocks interbanded with amphibolites considered to be of volcanic origin. The metasedimentary rocks fall into two distinct categories: a) schistose semipelites, which form the main part of the outcrop; and b) narrow bands of different rock types, including siliceous, carbonate-bearing and graphitic rocks, occurring in close association with the metavolcanic amphibolites. Both the compositional banding and the dominant foliation throughout the LMG outcrop are steeply dipping and trend uniformly NW-SE.The sequence of lithotectonic rock units from SW to NE (structurally upwards) is shown in the cross-section (Fig. 4.1) and briefly described in Table 4.1. The original names of the lithotectonic units (Park 1964) are retained for convenience. The depositional age of the LMG is presumed to be around 2.0 Ga, based on a Sm-Nd model age (O'Nions et al. 1983) and detrital zircon dates (Whitehouse et al. 1991 a, 2001) (see below).Semipelites form several distinct NW-trending belts separated by amphibolite sheets. The most prominent belt comprises the Flowerdale schist unit (see map) which occupies a broad belt about 700 m in width, extending in a northwesterly direction across the Gairloch district, but ending north of the mapped area, where the two amphibolites from either side converge, 3.5 km north of the Gairloch-Poolewe road. This belt is offset in the centre of the area by the Flowerdale fault, and has a total exposed length of about 15 km. Southwest of this belt is the

1995 ◽  
Vol 7 (1) ◽  
pp. 87-97 ◽  
Author(s):  
A.B. Moyes ◽  
J.R. Krynauw ◽  
J.M. Barton

The Ahlmannryggen-Borgmassivet area of western Dronning Maud Land comprises a relatively undeformed, unmetamorphosed sequence of sedimentary-volcanogenic rocks, the Ritscherflya Supergroup, intruded by a suite of continental tholeiites, the Borgmassivet Intrusions. New Rb-Sr and Sm-Nd whole rock data from the Högfonna Formation at Grunehogna indicate a depositional age of ≈1080 Ma, the first reported direct dating of any member of the Ritscherflya Supergroup. These rocks are interpreted as a molasse-type deposit following the Kibaran orogeny at 1200–1100 Ma, and correlation is made with the Umkondo and Koras groups of southern Africa. The Ritscherflya Supergroup is intruded by the Grunehogna and Kullen sills; the ≈1000 Ma Grunehogna sill intruded unconsolidated sediments, causing partial melting of the sediments. Rb-Sr data from the Kullen sill yield an age of 1429 Ma, clearly inconsistent with these data. Combined Sr and Nd data are compatible with crustal contamination of this sill, producing a Rb-Sr pseudo-isochron with no geological age significance. By comparison with other outcrops of the Borgmassivet Intrusions at Robertskollen and Annandagstoppane, it is concluded that contamination and pseudo-isochrons may be responsible for the wide range in reported ages older than 1000 Ma. Thus the intrusive age of the Borgmassivet Intrusions is concluded to be ≈1000 Ma old. Nd model age data indicate that all rock types were ultimately derived from material separated from a depleted mantle source at ≈2200 Ma.


2016 ◽  
Vol 52 ◽  
pp. 037 ◽  
Author(s):  
Chris E. White ◽  
Sandra M. Barr ◽  
Donald W. Davis ◽  
David S. Swanton ◽  
John W.F. Ketchum ◽  
...  

 The Creignish Hills and North Mountain areas of southwestern Cape Breton Island consist mostly of Neoproterozoic rocks typical of the Ganderian Bras d’Or terrane. U-Pb ages presented here for detrital zircon in the Blues Brook Formation of the Creignish Hills confirm a depositional age no greater than about 600 Ma. Although it is possible that some components of the formation are much older, similarities in rock types and field relations suggest that this is not the case. It is likely that the equivalent Malagawatch Formation of the North Mountain area, as well as high-grade metasedimentary rocks of the Melford Formation and Chuggin Road complex in the Creignish Hills and Lime Hill gneiss complex in the North Mountain area, represent the same or stratigraphically equivalent units as the Blues Brook Formation. The minimum ages of all of these units are constrained by cross-cutting syn- and post-tectonic plutons with ages mostly between 565 and 550 Ma, indicating that sediments were deposited, regionally metamorphosed, deformed, and intruded by plutons in less than 40–50 million years. The assemblage of pelitic, psammitic, and carbonate rocks indicates that a passive margin in a tropical climate was quickly changed to an active Andean-type continental margin in which voluminous calcalkaline dioritic to granitic plutons were emplaced. This sedimentary and tectonic history is characteristic of the Bras d’Or terrane and is shared by its likely correlative, the Brookville terrane in southern New Brunswick. 


2007 ◽  
Vol 13 ◽  
pp. 41-44 ◽  
Author(s):  
Christian Knudsen ◽  
Jeroen A.M. Van Gool ◽  
Claus Østergaard ◽  
Julie A. Hollis ◽  
Matilde Rink-Jørgensen ◽  
...  

A gold prospect on central Storø in the Nuuk region of southern West Greenland is hosted by a sequence of intensely deformed, amphibolite facies supracrustal rocks of late Mesoto Neoarchaean age. The prospect is at present being explored by the Greenlandic mining company NunaMinerals A/S. Amphibolites likely to be derived from basaltic volcanic rocks dominate, and ultrabasic to intermediate rocks are also interpreted to be derived from volcanic rocks. The sequence also contains metasedimentary rocks including quartzites and cordierite-, sillimanite-, garnet- and biotite-bearing aluminous gneisses. The metasediments contain detrital zircon from different sources indicating a maximum age of the mineralisation of c. 2.8 Ga. The original deposition of the various rock types is believed to have taken place in a back-arc setting. Gold is mainly hosted in garnet- and biotite-rich zones in amphibolites often associated with quartz veins. Gold has been found within garnets indicating that the mineralisation is pre-metamorphic, which points to a minimum age of the mineralisation of c. 2.6 Ga. The geochemistry of the goldbearing zones indicates that the initial gold mineralisation is tied to fluid-induced sericitisation of a basic volcanic protolith. The hosting rocks and the mineralisation are affected by several generations of folding.


2013 ◽  
Vol 150 (6) ◽  
pp. 1103-1126 ◽  
Author(s):  
DETA GASSER ◽  
ARILD ANDRESEN

AbstractThe tectonic origin of pre-Devonian rocks of Svalbard has long been a matter of debate. In particular, the origin and assemblage of pre-Devonian rocks of western Spitsbergen, including a blueschist-eclogite complex in Oscar II Land, are enigmatic. We present detrital zircon U–Pb LA-ICP-MS data from six Mesoproterozoic to Carboniferous samples and one U–Pb TIMS zircon age from an orthogneiss from Oscar II Land in order to discuss tectonic models for this region. Variable proportions of Palaeo- to Neoproterozoic detritus dominate the metasedimentary samples. The orthogneiss has an intrusion age of 927 ± 3 Ma. Comparison with detrital zircon age spectra from other units of similar depositional age within the North Atlantic region indicates that Oscar II Land experienced the following tectonic history: (1) the latest Mesoproterozoic sequence was part of a successor basin which originated close to the Grenvillian–Sveconorwegian orogen, and which was intruded byc. 980–920 Ma plutons; (2) the Neoproterozoic sediments were deposited in a large-scale basin which stretched along the Baltoscandian margin; (3) the eclogite-blueschist complex and the overlying Ordovician–Silurian sediments probably formed to the north of the Grampian/Taconian arc; (4) strike-slip movements assembled the western coast of Spitsbergen outside of, and prior to, the main Scandian collision; and (5) the remaining parts of Svalbard were assembled by strike-slip movements during the Devonian. Our study confirms previous models of complex Caledonian terrane amalgamation with contrasting tectonic histories for the different pre-Devonian terranes of Svalbard and particularly highlights the non-Laurentian origin of Oscar II Land.


1978 ◽  
Vol 15 (11) ◽  
pp. 1773-1782 ◽  
Author(s):  
Yuch-Ning Shieh ◽  
Henry P. Schwarcz

The average 18O/16O ratios of the major rock types of the surface crystalline rocks in different parts of the Canadian Precambrian Shield have been determined, using 47 composite samples prepared from 2221 individual rock specimens. The sampling areas include Baffin Island, northern and southwestern Quebec, Battle Harbour – Cartwright, northern District of Keewatin, Fort Enterprise, Snowbird Lake, Kasmere Lake, and Saskatchewan, covering approximately 1 400 000 km2. The granitic rocks from the Superior, Slave, and Churchill Provinces vary only slightly from region to region (δ18O = 6.9–8.4‰) and are significantly lower in 18O than similar rock types from the younger Grenville Province (δ = 9.2–10.0‰). The sedimentary and metasedimentary rocks have δ18O = 9.0–11.7‰ and hence are considerably lower than their Phanerozoic equivalents, possibly reflecting the presence of a high percentage of little-altered igneous rock detritus in the original sediments. The basic rocks in most regions fall within a δ18O range of 6.8–7.6‰, except in northern and southwestern Quebec where the δ-values are abnormally high (8.5–8.9‰). The overall average 18O/16O ratio of the surface crystalline rocks of the Canadian Shield is estimated to be 8.0‰, which represents an enrichment with respect to probable mantle derived starting materials by about 2‰.


Sign in / Sign up

Export Citation Format

Share Document