scholarly journals Basement reservoir plumbing: fracture aperture, length and topology analysis of the Lewisian Complex, NW Scotland

2020 ◽  
Vol 177 (6) ◽  
pp. 1281-1293 ◽  
Author(s):  
K. J. W. McCaffrey ◽  
R. E. Holdsworth ◽  
J. Pless ◽  
B. S. G. Franklin ◽  
K. Hardman

Upfaulted ridges of Neoarchean crystalline basement rocks formed in the Faeroe-Shetland basin as a consequence of Mesozoic rift processes and are an active target for oil exploration. We carried out a comprehensive fault and fracture attribute study on the extensive exposures of geologically equivalent crystalline basement rocks onshore in NW Scotland (Lewisian Gneiss Complex) as an analogue for the offshore oil and gas reservoirs of the uplifted Rona Ridge basement high. Our analysis shows a power-law distribution for fracture sizes (aperture and length), with random to clustered spacing and high connectivity indices. Regional variations between the Scottish mainland and the Outer Hebrides are recognized that compare directly with variations observed along the Rona Ridge in the Faeroe-Shetland basin. Here we develop a model for the scaling properties of the fracture systems in which variations in the aperture attributes are a function of the depth of erosion beneath the top basement unconformity. More generally, the combination of size, spatial and connectivity attributes we found in these basement highs demonstrates that they can form highly effective, well-plumbed reservoir systems in their own right.Supplementary material: Additional methods and results are available at: https://doi.org/10.6084/m9.figshare.c.5017139Thematic collection: This article is part of the The Geology of Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/the-geology-of-fractured-reservoirs

2020 ◽  
Vol 177 (5) ◽  
pp. 1074-1091
Author(s):  
Estibalitz Ukar ◽  
Vinyet Baqués ◽  
Stephen E. Laubach ◽  
Randall Marrett

At >7 km depths in the Tarim Basin, hydrocarbon reservoirs in Ordovician rocks of the Yijianfang Formation contain large cavities (c. 10 m or more), vugs, fractures and porous fault rocks. Although some Yijianfang Formation outcrops contain shallow (formed near surface) palaeokarst features, cores from the Halahatang oilfield lack penetrative palaeokarst evidence. Outcrop palaeokarst cavities and opening-mode fractures are mostly mineral filled but some show evidence of secondary dissolution and fault rocks are locally highly (c. 30%) porous. Cores contain textural evidence of repeated formation of dissolution cavities and subsequent filling by cement. Calcite isotopic analyses indicate depths between c. 220 and 2000 m. Correlation of core and image logs shows abundant cement-filled vugs associated with decametre-scale fractured zones with open cavities that host hydrocarbons. A Sm–Nd isochron age of 400 ± 37 Ma for fracture-filling fluorite indicates that cavities in core formed and were partially cemented prior to the Carboniferous, predating Permian oil emplacement. Repeated creation and filling of vugs, timing constraints and the association of vugs with large cavities suggest dissolution related to fractures and faults. In the current high-strain-rate regime, corroborated by velocity gradient tensor analysis of global positioning system (GPS) data, rapid horizontal extension could promote connection of porous and/or solution-enlarged fault rock, fractures and cavities.Supplementary material: Stable isotopic analyses and the velocity gradient tensor and principal direction and magnitude calculation are available at https://doi.org/10.6084/m9.figshare.c.4946046Thematic collection: This article is part of the The Geology of Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/the-geology-of-fractured-reservoirs


2021 ◽  
pp. geochem2021-037
Author(s):  
E.G. Potter ◽  
C.J. Kelly ◽  
W.J. Davis ◽  
G. Chi ◽  
S-Y. Jiang ◽  
...  

The Patterson Lake corridor is a new uranium district located on the southwestern margin of the Athabasca Basin. Known resources extend almost one kilometer below the unconformity in graphite- and sulfide-bearing shear zones within highly altered metamorphic rocks. Despite different host rocks and greater depths below the unconformity, alteration assemblages (chlorite, illite, kaolinite, tourmaline and hematite), ore grades and textures are typical of unconformity-related deposits. This alteration includes at least three generations of Mg-rich tourmaline (magnesio-foitite). The boron isotopic composition of magnesio-foitite varies with generation: the earliest generation only observed in shallow samples from the Triple R deposit (Tur 1) contain the heaviest isotopic signature (δ11B ≈ +26 to +19 ‰), whereas subsequent generations (Tur 2, Tur 3) yield lighter and more homogeneous isotopic signatures (δ11B ≈ +17.5 to +19.9 ‰). These results are consistent with precipitation from low temperature, NaCl- and CaCl2-rich brine(s) derived from an isotopically heavy boron source (e.g. evaporated seawater) that interacted with tourmaline and silicates in the basement rocks and/or fluids derived from depth (with low δ11B values). The lower δ11B values in paragenetically later magnesio-foitite reflect greater contributions of basement-derived boron over time whereas minor compositional variations reflect local metal sources (e.g. Cr, V, Ti) and evolving fluid chemistry (decreasing Na and Ca, increasing Mg) over time. The δ11B and chemical variation in magnesio-foitite over time reinforce the strong interactions with basement rocks in these systems while supporting incursion of basinal brines well below the unconformity contact.Thematic collection: This article is part of the Uranium Fluid Pathways collection available at: https://www.lyellcollection.org/cc/uranium-fluid-pathwaysSupplementary material:https://doi.org/10.6084/m9.figshare.c.5727555


2020 ◽  
Vol 177 (5) ◽  
pp. 1092-1106 ◽  
Author(s):  
Loraine Pastoriza Primaleon ◽  
Kenneth J.W. McCaffrey ◽  
Robert E. Holdsworth

The characterization of fracture networks using attribute and topological analyses has not been widely applied to the understanding and prediction of the secondary porosity, permeability and fluid flow characteristics of geothermal resources. We acquired fracture length, aperture, intensity and topological data from remotely sensed images and surface exposures of the Cuernos de Negros region and compared these data with well cores and thin sections from the underlying active geothermal reservoir: the Southern Negros Geothermal Field, west central Philippines. We show that the fracture attributes of the analogue and reservoir are best described by a power law distribution of fracture length and aperture intensity across six to eight orders of magnitude. This characterization of outcrop and borehole fractures validates the use of surface exposures as analogues for the Southern Negros Geothermal Field reservoir rocks at depth. An observed change in the scaling exponent in the 100–500 m length scale suggests that regional to sub-regional fracture systems scale differently from those at the meso- and macroscale, which may be a strata-bound effect or a sampling issue. Topological analyses show a dominance of Y-nodes and doubly connected branches, that indicates a high degree of fracture connectivity, which is important for effective fluid flow.Supplementary Material: Slopes, coefficient of determination and Aikake information criterion values of the cumulative frequency v. length and aperture plots of all fracture transects are available at https://doi.org/10.6084/m9.figshare.c.4960559Thematic collection: This article is part of the The Geology of Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/the-geology-of-fractured-reservoirs


2019 ◽  
Vol 177 (5) ◽  
pp. 1057-1073 ◽  
Author(s):  
R. E. Holdsworth ◽  
R. Trice ◽  
K. Hardman ◽  
K. J. W. McCaffrey ◽  
A. Morton ◽  
...  

Hosting up to 3.3 billion barrels of oil in place, the upfaulted Precambrian crystalline rocks of the Lancaster field, offshore west of Shetland, give key insights into how fractured hydrocarbon reservoirs can form in such old rocks. The Neoarchean (c. 2700–2740 Ma) charnockitic basement is cut by deeply penetrating oil-, mineral- and sediment-filled fissure systems seen in geophysical and production logs and thin sections of core. Mineral textures and fluid inclusion geothermometry suggest that a low-temperature (<200°C) near-surface hydrothermal system is associated with these fissures. The fills help to permanently prop open fissures in the basement, permitting the ingress of hydrocarbons into extensive well-connected oil-saturated fracture networks. U–Pb dating of calcite mineral fills constrains the onset of mineralization and contemporaneous oil charge to the mid-Cretaceous and later from Jurassic source rocks flanking the upfaulted ridge. Late Cretaceous subsidence and deposition of mudstones sealed the ridge, and was followed by buoyancy-driven migration of oil into the pre-existing propped fracture systems. These new observations provide an explanation for the preservation of intra-reservoir fractures (‘joints’) with effective apertures of 2 m or more, thereby highlighting a new mechanism for generating and preserving fracture permeability in sub-unconformity fractured basement reservoirs worldwide.Supplementary material: Analytical methods and isotopic compositions and ages are available at https://doi.org/10.6084/m9.figshare.c.4763237Thematic Collection: This article is part of the Geology of Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/the-geology-of-fractured-reservoirs


2021 ◽  
pp. jgs2021-035
Author(s):  
Wanchese M. Saktura ◽  
Solomon Buckman ◽  
Allen P. Nutman ◽  
Renjie Zhou

The Jurassic–Cretaceous Tsoltak Formation from the eastern borderlands of Ladakh Himalaya consists of conglomerates, sandstones and shales, and is intruded by norite sills. It is the oldest sequence of continent-derived sedimentary rocks within the Shyok Suture. It also represents a rare outcrop of the basement rocks to the voluminous Late Cretaceous–Eocene Ladakh Batholith. The Shyok Formation is a younger sequence of volcaniclastic rocks that overlie the Tsoltak Formation and record the Late Cretaceous closure of the Mesotethys Ocean. The petrogenesis of these formations, ophiolite-related harzburgites and norite sill is investigated through petrography, whole-rock geochemistry and U–Pb zircon geochronology. The youngest detrital zircon grains from the Tsoltak Formation indicate Early Cretaceous maximum depositional age and distinctly Gondwanan, Lhasa microcontinent-related provenance with no Eurasian input. The Shyok Formation has Late Cretaceous maximum depositional age and displays a distinct change in provenance to igneous detritus characteristic of the Jurassic–Cretaceous magmatic arc along the southern margin of Eurasia. This is interpreted as a sign of collision of the Lhasa microcontinent and the Shyok ophiolite with Eurasia along the once continuous Shyok–Bangong Suture. The accreted terranes became the new southernmost margin of Eurasia and the basement to the Trans-Himalayan Batholith associated with the India-Eurasia convergence.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5633162


2019 ◽  
Vol 56 (1) ◽  
pp. 30-46 ◽  
Author(s):  
Ashley M. Abrook ◽  
Ian P. Matthews ◽  
Alice M. Milner ◽  
Ian Candy ◽  
Adrian P. Palmer ◽  
...  

The Last Glacial–Interglacial Transition (LGIT) is a period of climatic complexity where millennial-scale climatic reorganization led to changes in ecosystems. Alongside millennial-scale changes, centennial-scale climatic events have been observed within records from Greenland and continental Europe. The effects of these abrupt events on landscapes and environments are difficult to discern at present. This, in part, relates to low temporal resolutions attained by many studies and the sensitivity of palaeoenvironmental proxies to abrupt change. We present a high-resolution palynological and charcoal study of Quoyloo Meadow, Orkney and use the Principal Curve statistical method to assist in revealing biostratigraphic change. The LGIT vegetation succession on Orkney is presented as open grassland and Empetrum heath during the Windermere Interstadial and early Holocene, and open grassland with Artemisia during the Loch Lomond Stadial. However, a further three phases of ecological change, characterized by expansions of open ground flora, are dated to 14.05–13.63, 10.94–10.8 and 10.2 cal ka BP. The timing of these changes is constrained by cryptotephra of known age. The paper concludes by comparing Quoyloo Meadow with Crudale Meadow, Orkney, and suggests that both Windermere Interstadial records are incomplete and that fire is an important landscape control during the early Holocene.Supplementary material: All raw data associated with this publication: raw pollen counts, charcoal data, Principal Curve and Rate of Change outputs and the age-model output are available at https://doi.org/10.6084/m9.figshare.c.4725269Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research


2021 ◽  
pp. jgs2021-037
Author(s):  
Michael J. Benton ◽  
Andrey G. Sennikov

The naming of the Permian by Roderick Murchison in 1841 is well known. This is partly because he ‘completed’ the stratigraphic column at system level, but also because of the exotic aspects of his extended fieldwork in remote parts of Russia and Murchison's reputed character. Here, we explore several debated and controversial aspects of this act, benefiting from access to documents and reports notably from Russian sources. Murchison or Sedgwick could have provided a name for the unnamed lower New Red Sandstone in 1835 based on British successions or those in Germany, so perhaps the Imperial aim of naming time from British geology was not the urgent task some have assumed. Murchison has been painted as arrogant and Imperialistic, which was doubtless true, but at the time many saw him as a great leader, even an attractive individual. Others suggest he succeeded because he stood on the shoulders of local geologists; however, his abilities at brilliant and rapid geological synthesis are undoubted. Two unexpected consequences of his work are that this arch conservative is revered in Russia as a hero of geological endeavours, and, for all his bombast, his ‘Permian’ was not widely accepted until 100 years after its naming.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5412079


2018 ◽  
Vol 481 (1) ◽  
pp. 127-146 ◽  
Author(s):  
Chiara Montemagni ◽  
Chiara Montomoli ◽  
Salvatore Iaccarino ◽  
Rodolfo Carosi ◽  
Arvind K. Jain ◽  
...  

AbstractThe timing of shearing along the Vaikrita Thrust, the upper structural boundary of the Main Central Thrust Zone in the Garhwal Himalaya, was constrained by combined microstructural, microchemical and geochronological investigations. Three different biotite–muscovite growth and recrystallization episodes were observed: a relict mica-1; mica-2 along the main mylonitic foliation; and mica-3 in coronitic structures around garnet during its breakdown. Electron microprobe analyses of biotite showed chloritization and a bimodal composition of biotite-2 in one sample. Muscovite-2 and muscovite-3 differed in composition from each other. Biotite and muscovite 39Ar–40Ar age spectra from all samples showed both inter- and intra-sample discrepancies. Biotite step-ages ranged between 8.6 and 16 Ma and muscovite step-ages between 3.6 and 7.8 Ma. These ages cannot be interpreted as ‘cooling ages’ because samples from the same outcrop cooled simultaneously. Instead, the Ar systematics reflect sample-specific recrystallization markers. Intergrown impurities were diagnosed by the Ca/K ratios. The age data of biotite were interpreted as a mixture of true biotite-2 (9.00 ± 0.10 Ma) and two alteration products. The negative Cl/K–age correlation identified a Cl-poor muscovite-2 (>7 Ma) and a Cl-rich, post-deformational, coronitic muscovite-3 grown at ≤5.88 ± 0.03 Ma. The Vaikrita Thrust was active at least from 9 to 6 Ma at c. 600°C; its movement had ended by 6 Ma.Supplementary material: Thermometric and 39Ar–40Ar data are available at https://doi.org/10.6084/m9.figshare.c.4069076


2021 ◽  
pp. jgs2021-030
Author(s):  
Catherine E. Boddy ◽  
Emily G. Mitchell ◽  
Andrew Merdith ◽  
Alexander G. Liu

Macrofossils of the late Ediacaran Period (c. 579–539 Ma) document diverse, complex multicellular eukaryotes, including early animals, prior to the Cambrian radiation of metazoan phyla. To investigate the relationships between environmental perturbations, biotic responses and early metazoan evolutionary trajectories, it is vital to distinguish between evolutionary and ecological controls on the global distribution of Ediacaran macrofossils. The contributions of temporal, palaeoenvironmental and lithological factors in shaping the observed variations in assemblage taxonomic composition between Ediacaran macrofossil sites are widely discussed, but the role of palaeogeography remains ambiguous. Here we investigate the influence of palaeolatitude on the spatial distribution of Ediacaran macrobiota through the late Ediacaran Period using two leading palaeogeographical reconstructions. We find that overall generic diversity was distributed across all palaeolatitudes. Among specific groups, the distributions of candidate ‘Bilateral’ and Frondomorph taxa exhibit weakly statistically significant and statistically significant differences between low and high palaeolatitudes within our favoured palaeogeographical reconstruction, respectively, whereas Algal, Tubular, Soft-bodied and Biomineralizing taxa show no significant difference. The recognition of statistically significant palaeolatitudinal differences in the distribution of certain morphogroups highlights the importance of considering palaeolatitudinal influences when interrogating trends in Ediacaran taxon distributions.Supplementary material: Supplementary information, data and code are available at https://doi.org/10.6084/m9.figshare.c.5488945Thematic collection: This article is part of the Advances in the Cambrian Explosion collection available at: https://www.lyellcollection.org/cc/advances-cambrian-explosion


2021 ◽  
pp. SP513-2020-274
Author(s):  
S. I. Kostrovitsky ◽  
D. A. Yakovlev ◽  
I. S. Sharygin ◽  
D. P. Gladkochub ◽  
T. V. Donskaya ◽  
...  

AbstractIngashi lamproite dykes are the only known primary sources of diamond in the Irkutsk district (Russia) and the only non-kimberlitic one in the Siberian craton. Ingashi lamproite field placed in Urik-Iya graben within Prisayan uplift of Siberian craton. Phlogopite-olivine lamproites contain olivine, talc, phlogopite, serpentine, chlorite, olivine, garnet, chromite, orthopyroxene, clinopyroxene as well as Sr-F-apatite, monazite, zircon, armolcolite, priderite, potassium Mg-arfvedsonite, Mn-ilmenite, Nb-rutile, and diamond. The only one ultramafic lamprophyre dyke is composed mainly of serpentinized olivine and phlogopite in the talc-carbonate groundmass and similar (to Ingashi lamproites) accessory assemblage with the same major elements compositions. Trace element and Sr-Nd isotopic relationships of the Ingashi lamproites are similar to classic lamproites. Different dating methods have provided the ages of lamproites: 1481 Ma (Ar-Ar phlogopite), 1268 Ma (Rb-Sr whole rock) and 300 Ma (U-Pb zircon). Ingashi lamproite ages are controversial and require additional study. Calculated pressure of 3.5 GPamax for clinopyroxenes indicating that lamproite magma originated deeper than 100 km. Cr-in-garnet barometer (Grutter et al., 2006) shows a 3.7-4.3 GPamin and derivation of Ingashi lamproites deeper than 120 km depth. Based on the range of typical cratonic geotherms and presence of diamonds, the Ingashi lamproite magma originated at a depth greater than 155 km.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5493128


Sign in / Sign up

Export Citation Format

Share Document