Chapter 3 Thrusts, extensional faults and fold patterns of the major units

10.1144/m54.3 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThis chapter is concerned with the main faults and folds within the Southeastern Oman Mountains based on available literature. The main, best and most widely exposed thrusts are those related to the SW-directed late Cretaceous obduction of the allochthonous nappes onto the Arabian platform and margin. These thrusts are related to obduction of rocks, which had formed hundreds of kilometres offshore Oman. The thrusts were active from the Cenomanian to the Campanian. Obduction-related thrusts and folds are spectacularly exposed within the rocks of the Arabian platform in the eastern part of the Saih Hatat Dome, including large-scale recumbent cylindrical folds and sheath folds. At least six fold sets can be studied in the Southeastern Oman Mountains. At least two of them had formed prior to obduction and are exposed in the Pre-Permian formations of the Jabal Akhdar Dome. At least three fold sets formed in the course of obduction, while at least one fold set is postobductional in age. Besides the compressional structures, the Oman Mountains expose major post-obductional extensional faults, mostly at the margins of the Jabal Akhdar and Saih Hatat domes. The throw of these faults amounts to a few to several kilometres. Finally, this chapter provides an overview of the enigmatic Batinah Mélange which consists of slivers of Hawasina rocks, resting (unusually) structurally above the Semail Ophiolite.

GeoArabia ◽  
2006 ◽  
Vol 11 (4) ◽  
pp. 17-40 ◽  
Author(s):  
Marc Fournier ◽  
Claude Lepvrier ◽  
Philippe Razin ◽  
Laurent Jolivet

ABSTRACT After the obduction of the Semail ophiolitic nappe onto the Arabian Platform in the Late Cretaceous, north Oman underwent several phases of extension before being affected by compression in the framework of the Arabia-Eurasia convergence. A tectonic survey, based on structural analysis of fault-slip data in the post-nappe units of the Oman Mountains, allowed us to identify major events of the Late Cretaceous and Cenozoic tectonic history of northern Oman. An early ENE-WSW extensional phase is indicated by synsedimentary normal faults in the Upper Cretaceous to lower Eocene formations. This extensional phase, which immediately followed ductile extension and exhumation of high-pressure rocks in the Saih Hatat region of the Oman Mountains, is associated with large-scale normal faulting in the northeast Oman margin and the development of the Abat Basin. A second extensional phase, recorded in lower Oligocene formations and only documented by minor structures, is characterized by NNE (N20°E) and NW (N150°E) oriented extensions. It is interpreted as the far-field effect of the Oligocene-Miocene rifting in the Gulf of Aden. A late E-W to NE-SW directed compressional phase started in the late Oligocene or early Miocene, shortly after the collision in the Zagros Mountains. It is attested by folding, and strike-slip and reverse faulting in the Cenozoic series. The direction of compression changed from ENE-WSW in the Early Miocene to almost N-S in the Pliocene.


10.1144/m54.5 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 67-103
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThe tectonic evolution of the Oman Mountains as of the Neoproterozoic begins with a major extensional event, the Neoproterozoic Abu Mahara rifting. It was followed by the compressional Nabitah event, still during the Neoproterozoic, in Oman but possibly not in the study area. During the earliest Cambrian, the Jabal Akhdar area was affected by the Cadomian Orogeny, marked by NE--SW shortening. It is unclear, whether the Saih Hatat area was exposed to the Cadomian deformation, too. Still during the lower Cambrian, the Angudan Orogeny followed, characterized by NW--SE shortening. An episode of rifting affected the Saih Hatat area during the mid-Ordovician. During the mid-Carboniferous, both dome areas were deformed by tilting and large-scale open folding in the course of the ‘Hercynian’ event. As a consequence, a major unconformity formed. As another Late Paleozoic event, the Permian break-up of Pangaea and subsequent formation of the Hawasina ocean basin, are recorded in the Southeastern Oman Mountains. As a result, a passive margin formed which existed until the mid-Cretaceous, characterized by deposition of mostly shelfal carbonates. This interval of general tectonic quiescence was interrupted during the early Jurassic by uplift and tilting of the Arabian Platform. The platform collapsed during the late Cretaceous, related to the arrival of the obducted allochthonous nappes including the Semail Ophiolite, transforming the passive margin to an active margin.The Semail Ophiolite formed most likely above a subduction zone within the Neo-Tethys Ocean during the Cenomanian while parts of the Arabian Plate were subducted to the NE. Formation of oceanic lithosphere and SW-thrusting was broadly coeval, resulting in ophiolite obduction onto the Hawasina Basin. The Semail Ophiolite and the Hawasina rocks combined were thrust further onto the Arabian Plate. Their load created a foreland basin and forebulge within the Arabian Platform. Once the continental lithosphere of the Arabian Platform was forced into the subduction zone, a tear between the dense oceanic lithosphere and the buoyant continental lithosphere developed. This led to rapid uplift and exhumation of subducted continental lithosphere of the Saih Hatat area, while obduction was still going on, causing in multiple and intense folding/thrusting within the eastern Saih Hatat Dome. Exhumation of the Saih Hatat Dome was massive. The emplacement of the ophiolite was completed during the Campanian/Maastrichtian. For completeness, we also present alternative models for the developmental history of the Semail Ophiolite.Immediately after emplacement, the Arabian lithosphere underwent intense top-to-the-NE extensional shearing. Most of the Saih Hatat Dome was exhumed during the latest Cretaceous to Early Eocene, associated with major extensional shearing at its flanks. Further convergence during the late Eocene to Miocene resulted in exhumation of the Jabal Akhdar Dome and some gentle exhumation of the Saih Hatat Dome, shaping the present-day Southeastern Oman Mountains. In the coastal area, east and SE of the Saih Hatat Dome, some late Cretaceous to present-day uplift is evident by, e.g., uplifted marine terraces. The entire Oman Mountains are uplifting today, which is evident by the massive wadi incision into various rock units, including wadi deposits which may form overhangs.


10.1144/m54.6 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThis chapter provides the conclusions/outlines of the tectonics, affecting the Southeastern Oman Mountains, including the Jabal Akhdar and Saih Hatat domes. The main tectonic events include amongst others (1) Neoproterozoic rifting, (2) two distinct early Paleozoic compressive events, (3) large-scale open ‘Hercynian’ folding and formation of a pronounced unconformity during the late Paleozoic, (4) rifting preceding the opening of the Neo-Tethys Ocean during the late Paleozoic, (5) late Cretaceous obduction of the Semail Ophiolite and the response of the Arabian lithosphere as well as (6) post-obductional tectonics. Also of major geological significance are the three major glaciations (Sturtian, Marinoan and Late Paleozoic Gondwana glaciation) which have been recorded in the rocks of northern Oman. Moreover, major lithological, structural and metamorphic differences exist between the Jabal Akhdar and Saih Hatat domes. It appears likely that a major fault, striking parallel to the eastern margin of the Jabal Akhdar Dome, probably originating during Neoproterozoic terrain accretion, acted as a divide between both domes until present. This fault was multiple times reactivated and could explain the differences between the two domes. A catalogue of unanswered questions is included in chronological order to express that many geological aspects need further investigation and future research projects.


GeoArabia ◽  
2004 ◽  
Vol 9 (2) ◽  
pp. 81-132 ◽  
Author(s):  
Ingo Blechschmidt ◽  
Paulian Dumitrica ◽  
Albert Mater ◽  
Leopold Krystyn ◽  
Tjerk Peters

ABSTRACT The Triassic to Late Cretaceous deep-marine sediments of the Hamrat Duru Group, Oman Mountains, represent a subunit of the Hawasina nappe-complex which was deposited in a deep marine basin. During the Late Cretaceous SSW-directed obduction of the Semail Ophiolite, the Hawasina complex was emplaced onto the autochthonous cover of the Arabian basement, while the original configuration of the basin was destroyed. New lithostratigraphic results and high-resolution radiolarian and conodont biostratigraphy lead to a revised stratigraphic scheme of the Hamrat Duru Group which conforms with the standard stratigraphical nomenclature. The Hamrat Duru Group is divided into six formations: (1) The Early Triassic (Olenekian) to Late Triassic (Upper Norian) Zulla Formation (Limestone and Shale Member, Sandstone and Shale Member, Radiolarian Chert Member and Halobia Limestone Member); (2) The Late Triassic (late Norian to Rhaetian) Al Ayn Formation; (3) The Early Jurassic (late Pliensbachian) to Middle Jurassic (early Callovian) Guwayza Formation (Tawi Sadh Member and Oolitic Limestone Member); (4) Middle Jurassic (Callovian) to Late Cretaceous (Cenomanian?) Sid’r Formation (Lower Member, Upper Member); (5) Late Cretaceous (Cenomanian? to Santonian?) Nayid Formation; and (6) Late Jurassic (early Callovian) to Early (Late?) Cretaceous Wahrah Formation. Most of the lithostratigraphic units (formations and members) show isochronous boundaries between the different outcrop areas. The stratigraphic architecture of the Hamrat Duru Group megasequence is controlled by alternating siliciclastic and carbonate sedimentation possibly related to the second-order sea-level variations. The sediments accumulated on the continental rise of the Arabian margin mostly by submarine sediment-gravity flows and hemipelagic to pelagic rainout. A close relationship of the evolution of the Arabian Platform and the adjoining slope and basinal environments is evident. Changes in carbonate supply, oceanographic circulation and/or variations in silica productivity resulted in two distinct phases of radiolarian sedimentation. The first phase corresponds to the Triassic late Anisian-early Norian time interval; the second started in the Early Jurassic late Pliensbachian and lasted, with some interruptions, up to the Late Cretaceous Coniacian. The litho- and biostratigraphic similarities between the Mesozoic Hamrat Duru Basin of the northern/central Oman Mountains and the Mesozoic Batain Basin of northeastern Oman are seen as related to Neo-Tethys-wide palaeoceanographic changes and suggest a strong interdependence of the two basins with the evolution of the Arabian Platform.


GeoArabia ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. 387-402 ◽  
Author(s):  
M. Atef Noweir ◽  
Abdulrahman S. Alsharhan

ABSTRACT Detailed field mapping and structural studies in the Jebel Auha-Jebel Huwayyah area northeast of Al-Ain indicate that folding of neoautochthonous sedimentary rocks produced the north-northwest-trending Huwayyah Anticline. The anticline at the surface is composed of the Maastrichtian Qahlah and Simsima formations unconformably overlain by shallow-marine carbonate rocks that are correlated on faunal grounds with the Middle Eocene Dammam Formation. The investigation of the Huwayyah Anticline has identified three microfacies of bioclastic packstone, nummulitic packstone, and nummulitic packstone-grainstone in the local Dammam Formation. Diagenesis in the form of silicification, cementation, recrystallization, dissolution, compaction and neomorphism is widespread. The Huwayyah Anticline is a fault-propagation fold above a thrust ramp. The ramp developed from a pre-existing Late Cretaceous basal thrust within the Semail Ophiolite on the Oman Mountain Front. The anticline was formed as a result of regional compressive deformation due to rejuvenation of the Late Cretaceous thrust in post-Middle Eocene times. Westward-directed high-angle reverse faults of Jebel Auha trend parallel to the fold axis of the anticline. The Auha faults probably originated as west-dipping thrusts on the western flank of the anticline and were subsequently rotated to their present attitude as the flank of the anticline became steeper due to compression from the east.


1984 ◽  
Vol 21 (4) ◽  
pp. 396-406 ◽  
Author(s):  
Michael P. Searle

High-level intrusions of highly undersaturated alkalic ultrabasic and gabbroic rocks occur in four areas of the Oman Mountains. They all intrude either the Haybi volcanic – Oman Exotic limestone (Permo-Triassic) thrust slice immediately beneath the Semail Ophiolite (Cenomanian) or the uppermost thrust slice of the underlying Hawasina (Permian to Cenomanian) Tethyan sediments. Detailed structural mapping indicates that the sills were all emplaced prior to the Late Cretaceous thrusting of the Oman allochthon onto the Mesozoic continental margin of Arabia, and therefore in an oceanic setting. These differentiated sills consist of biotite wehrlites at the base and kaersutite-bearing jacupirangites above, with kaersutite gabbros at the top. Olivine occurs only at the base. Titanaugite, kaersutite, titanium phlogopite, apatite, and opaque iron–titanium oxides are common mineral phases.Fractional crystallization and gravity differentiation processes and a rapid increase in volatile components at decreasing pressures all played a part in the petrogenesis of these uncommon intrusive rocks. K–Ar ages on biotites span the mid-Jurassic to Cenomanian, and in the northern Oman Mountains kaersutite jacupirangites are incorporated into the Cenomanian–Turonian amphibolite facies metamorphic sheet beneath the Semail Ophiolite. Alkaline magmas were present at depth along the passive continental margin, right up until Cenomanian times when northeast subduction was initiated and compressional tectonics began. Alkaline volcanism of Cenomanian age in the Dibba Zone indicates that tensional rifting processes were operative along the continental margin at the same time as compressional thrusting was occurring outboard. The alkaline rocks are unrelated to the ophiolite but are artifacts of Mesozoic rifting events in Tethys now preserved in footwall thrust slices beneath the ophiolite.


Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 490
Author(s):  
Mohammed H. N. Al-Kindi

Considering the foreland fold belt of the Salakh Arch in the northern Oman Mountains, predictions made from two-dimensional (2D) restorations and geometrical analyses are tested here to assess the relationship between large-scale folds and small-scale fractures. The Salakh Arch is composed of six anticlines that are interpreted as faulted detachment folds. They have an overall stratigraphy of a 2-km-thick carbonate platform underlain by more than 1.5 km of interbedded sandstone and shale sequences. These sequences are most likely detached on a regionally extensive evaporite horizon. The folding of the Salakh Arch structures most likely occurred during the Neogene Period, and perhaps partly in the early Quaternary Period. This is evident from the thrusting of the Late Neogene Barzaman Formation which was deposited during the Late Neogene Period. Robust outcrop and subsurface fracture data are used to test these predictions. The results from the study indicate that most fractures are related to the orientation of the local structure, with some sets parallel and some sets perpendicular to local hinge lines. Prefolding regional fractures are also widely distributed, and these were mostly formed during the Late Cretaceous Period. Many pre-existing fractures are associated with faults that formed during the Late Cretaceous Period under a NW–SE compression. The local fractures generally have orientations that are consistent with being formed by the flexural slip/flexural flow of fold limbs and tangential longitudinal strains on fold hinges. These structures can be predicted from finite stratal dips, simple curvatures, and three-dimensional (3D) folding restoration maps. The Gaussian curvatures and 3D faulting restoration maps can be used as proxies for fault-related fractures. Local hinge-related fractures may reflect local tangential longitudinal strain during large-scale fold tightening. Fold structures that have formed at an oblique orientation to the regional shortening direction show additional fracture arrays perpendicular to the hinge, indicating weak axial extension. This is presumed to develop as the arcuate thrust belt of Salakh Arch was amplified. The analysis here illustrates the importance of taking a 3D approach, especially for noncylindrical folds. The protocols developed in this study and their results may have general applicability to investigations of fracture patterns in other folds.


GeoArabia ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 141-176 ◽  
Author(s):  
David J.W. Cooper ◽  
Mohammed Y. Ali ◽  
Michael P. Searle ◽  
Ali I. Al-Lazki

ABSTRACT The Jabal Qumayrah area, 50 km ESE of Al Ain and Buraimi, preserves a culmination of Jurassic and Cretaceous continental slope deposits (Sumeini Group) that was emplaced during the Late Cretaceous onto the Oman margin with other Neo-Tethyan units and the Semail Ophiolite. Almost uniquely in the Oman Mountains, Jabal Qumayrah also contains outcrops of gypsum and anhydrite that occur as a central complex from which laterally discontinuous linear and arcuate outcrops extend up to 4 km to the northwest and south. The gypsum and anhydrite bodies contain sedimentary clasts and rafts, which show close affinities with the local Sumeini Group host rock. There are no sedimentary features that indicate the evaporites were deposited in situ, either as part of, or unconformably overlying the Sumeini Group. Boundaries with the host rock are either high-angle faults or steep and intrusive, with significant dissolution of host rock limestones. Two gravity transects across the area indicate the areas of gypsum and anhydrite lie on a gravity low, compatible with an elongated, high-level body concentrated along the main N-S axis of the Jabal Qumayrah dome. Taken together, these features point towards an intrusive origin for the evaporite bodies in Jabal Qumayrah. While the sub-surface is poorly constrained, the central complex is interpreted as representing the deeply weathered top of a salt diapir, whose emplacement had a strong tectonic fault-driven component. The smaller, discontinuous exposures to the northwest and south are interpreted as pods of gypsum and anhydrite that were injected along faults. The absence of other evaporite minerals, in particular halite, is attributed to deep weathering and dissolution similar to that seen at the surface-piercing salt domes of the Ghaba Salt Basin in central Oman. In the absence of unequivocal dating evidence, the regional context suggests the intrusion may be derived from evaporites within the Ediacaran–Early Cambrian Ara Group. These form large deposits in the Fahud and Ghaba salt basins to the southwest of the Oman Mountains and the Hormuz Salt Basin to the north. The Jabal Qumayrah area may represent another, smaller basin or an extension to the Fahud Basin. The Jabal Qumayrah intrusion does not contain rafts of Ara Group limestones, which characterise the salt diapirs of the Ghaba Salt Basin, but this is not considered diagnostic. Other regional evaporite units of Permian to Jurassic ages do not extend into the area of the Oman Mountains and are thus unlikely potential sources. There is no evidence to suggest the Jabal Qumayrah culmination was thrust over Cenozoic evaporites and this potential source is also discounted. The timing of intrusion is constrained by the boundary faults, which cut across and thus post-date structures related to the Late Cretaceous emplacement of the Sumeini Group of Jabal Qumayrah. There is no evidence of any movement since the unroofing and exposure of the salt intrusion, which began in the Late Miocene.


Geosphere ◽  
2021 ◽  
Author(s):  
Bruce Levell ◽  
Michael Searle ◽  
Adrian White ◽  
Lauren Kedar ◽  
Henk Droste ◽  
...  

Late Cretaceous obduction of the Semail ophiolite and underlying thrust sheets of Neo-Tethyan oceanic sediments onto the submerged continental margin of Oman involved thin-skinned SW-vergent thrusting above a thick Guadalupian–Cenomanian shelf-carbonate sequence. A flexural foreland basin (Muti and Aruma Basin) developed due to the thrust loading. Newly available seismic reflection data, tied to wells in the Gulf of Oman, suggest indirectly that the trailing edge of the Semail Ophiolite is not rooted in the Gulf of Oman crust but is truncated by an ENE-dipping extensional fault parallel to the coastline. This fault is inferred to separate the Semail ophiolite to the SW from in situ oceanic Gulf of Oman crust to the NE. It forms the basin margin to a “hinterland” basin formed atop the Gulf of Oman crust, in which 5 km of Late Cretaceous deep-water mudstones accumulated together with 4 km of Miocene and younger deep-water mudstones and sandstones. Syndepositional folding included Paleocene–Eocene folds on N-S axes, and Paleocene to Oligocene growth faults with roll-over anticlines, along the basin flank. Pliocene compression formed, or tightened, box folds whose axes parallel the modern coast with local south-vergent thrusts and reversal of the growth faults. This Pliocene compression resulted in large-scale buckling of the Cenozoic section, truncated above by an intra-Pliocene unconformity. A spectacular 60-km-long, Eocene(?) to Recent, low-angle, extensional, gravitational fault, down-throws the upper basin fill to the north. The inferred basement of the hinterland basin is in situ Late Cretaceous oceanic lithosphere that is subducting northwards beneath the Makran accretionary prism.


GeoArabia ◽  
2008 ◽  
Vol 13 (2) ◽  
pp. 91-118 ◽  
Author(s):  
Mohammed Y. Ali ◽  
Manhal Sirat ◽  
James Small

ABSTRACT The area to the southeast of the city of Al Ain, Abu Dhabi, United Arab Emirates, is part of an arcuate sedimentary basin whose trend gradually changes from NNW near Al Ain to NNE at Ras Al Khaimah. The basin is bounded to the east by the generally N-trending Oman Mountains and on the west by an arcuate, overall west-verging fold-thrust front that involves Mesozoic carbonates. The fold-thrust front is part of the overall compressional system of Late Cretaceous age (with Late Tertiary reactivation) associated with obduction and emplacement of the Semail Ophiolite, Haybi, Hawasina and Sumeini sheets onto the continental margin of the Arabian Plate. Near Al Ain, the fold-thrust front is expressed as the remarkable, NNW-trending Jabal Hafit that rises one kilometer above the gravel-filled Al Jaww Plain. Gravity and magnetic investigations were carried-out in the Al Jaww Plain, an area of approximately 550 square km. The interpretation of these new data, including measurements of physical properties of rock samples from the area, were integrated with a new interpretation of an industry seismic reflection profile to provide constraints on the modelling of the subsurface structure and evolution of the sedimentary basin beneath Al Jaww Plain. We recognised four major tectono-stratigraphic units in the seismic profiles: autochthonous shelf carbonates, the Hawasina allochthon, Upper Cretaceous foreland basin sediments (primarily Fiqa Formation), and Tertiary neo-authochthonous units. Along-strike variations in the residual Bouguer gravity field were interpreted as being due to either variations in the thickness, or even total absence, of the Hawasina sheet. Comparison of two E-W gravity profiles, one in the southern part of our study area and the other to the north, suggest that the Hawasina sheet underlies little of the southern area but almost all of the northern area. Magnetic anomalies are weak (< 50 nT) over most of the area but peak (> 300 nT) in the easternmost part of the southern profile, where the high-susceptibility rocks of the Semail Ophiolite are exposed. Thus, we interpret that no continuation of the ophiolite extends westward from this outcrop into the subsurface of the study area. The structural geometries described here have resulted from two major tectonic events. The first, a Late Cretaceous phase, emplaced the obduction-related allochthonous thrust sheets of the Oman Mountains westward onto the Mesozoic carbonate platform. This phase primarily affected the eastern part of the study area and contributed to both the high magnetic (> 300 nT) and residual Bouguer gravity (> 14.0 mGal) anomalies. The second event, a Tertiary deformation phase, affected most parts of the area and produced a series of asymmetrical anticlines and synclines trending in a NNW-SSE direction. This phase contributed to the low residual gravity anomaly (< -9.0 mGal) in the center of the study area. We modelled that area as containing a sequence of post-Eocene carbonate sediments with a minimum thickness of 2.0 km. The Tertiary folding and thrusting formed as a result of a regional compressive deformation, whose principal compressive stress axes were sub-parallel to those of the Late Cretaceous compressional stress regime. The younger event reactivated high-angle reverse faults within the Mesozoic platform succession. Precise timing of the Tertiary deformation is debatable; it is most likely that the rejuvenation of the E-W to ENE-WSW Cretaceous stress regime took place in the Late Eocene-Miocene but gradually shifted to become N-S to NE-SW. This shift could be due to the collision of the Arabian and Eurasian plates and the opening of the Red Sea which started during Late Eocene and continues until the present-day.


Sign in / Sign up

Export Citation Format

Share Document