Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5015
Author(s):  
Muhammad Anas Hasnul ◽  
Nor Azlina Ab. Ab.Aziz ◽  
Salem Alelyani ◽  
Mohamed Mohana ◽  
Azlan Abd. Abd. Aziz

Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion recognition systems are an important technology that enables affective computing. Currently, there are a lot of ways to build an emotion recognition system using various techniques and algorithms. This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs) as a unimodal approach as well as part of a multimodal approach for emotion recognition systems. Critical observations of data collection, pre-processing, feature extraction, feature selection and dimensionality reduction, classification, and validation are conducted. This paper also highlights the architectures with accuracy of above 90%. The available ECG-inclusive affective databases are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion recognition systems towards healthcare systems is also reviewed here. Based on the literature reviewed, a thorough discussion on the subject matter and future works is suggested and concluded. The findings presented here are beneficial for prospective researchers to look into the summary of previous works conducted in the field of ECG-based emotion recognition systems, and for identifying gaps in the area, as well as in developing and designing future applications of emotion recognition systems, especially in improving healthcare.


2019 ◽  
Vol 63 (3) ◽  
pp. 351-363 ◽  
Author(s):  
Rim Afdhal ◽  
Ridha Ejbali ◽  
Mourad Zaied

Abstract Emotion recognition is a key work of research area in brain computer interactions. With the increasing concerns about affective computing, emotion recognition has attracted more and more attention in the past decades. Focusing on geometric positions of key parts of the face and well detecting them is the best way to increase accuracy of emotion recognition systems and reach high classification rates. In this paper, we propose a hybrid system based on wavelet networks using 1D Fast Wavelet Transform. This system combines two approaches: the biometric distances approach where we propose a new technique to locate feature points and the wrinkles approach where we propose a new method to locate the wrinkles regions in the face. The classification rates given by experimental results show the effectiveness of our proposed approach compared to other methods.


i-com ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 139-151
Author(s):  
Thomas Schmidt ◽  
Miriam Schlindwein ◽  
Katharina Lichtner ◽  
Christian Wolff

AbstractDue to progress in affective computing, various forms of general purpose sentiment/emotion recognition software have become available. However, the application of such tools in usability engineering (UE) for measuring the emotional state of participants is rarely employed. We investigate if the application of sentiment/emotion recognition software is beneficial for gathering objective and intuitive data that can predict usability similar to traditional usability metrics. We present the results of a UE project examining this question for the three modalities text, speech and face. We perform a large scale usability test (N = 125) with a counterbalanced within-subject design with two websites of varying usability. We have identified a weak but significant correlation between text-based sentiment analysis on the text acquired via thinking aloud and SUS scores as well as a weak positive correlation between the proportion of neutrality in users’ voice and SUS scores. However, for the majority of the output of emotion recognition software, we could not find any significant results. Emotion metrics could not be used to successfully differentiate between two websites of varying usability. Regression models, either unimodal or multimodal could not predict usability metrics. We discuss reasons for these results and how to continue research with more sophisticated methods.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5135
Author(s):  
Ngoc-Dau Mai ◽  
Boon-Giin Lee ◽  
Wan-Young Chung

In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Javier Marín-Morales ◽  
Juan Luis Higuera-Trujillo ◽  
Alberto Greco ◽  
Jaime Guixeres ◽  
Carmen Llinares ◽  
...  

2021 ◽  
Vol 335 ◽  
pp. 04001
Author(s):  
Didar Dadebayev ◽  
Goh Wei Wei ◽  
Tan Ee Xion

Emotion recognition, as a branch of affective computing, has attracted great attention in the last decades as it can enable more natural brain-computer interface systems. Electroencephalography (EEG) has proven to be an effective modality for emotion recognition, with which user affective states can be tracked and recorded, especially for primitive emotional events such as arousal and valence. Although brain signals have been shown to correlate with emotional states, the effectiveness of proposed models is somewhat limited. The challenge is improving accuracy, while appropriate extraction of valuable features might be a key to success. This study proposes a framework based on incorporating fractal dimension features and recursive feature elimination approach to enhance the accuracy of EEG-based emotion recognition. The fractal dimension and spectrum-based features to be extracted and used for more accurate emotional state recognition. Recursive Feature Elimination will be used as a feature selection method, whereas the classification of emotions will be performed by the Support Vector Machine (SVM) algorithm. The proposed framework will be tested with a widely used public database, and results are expected to demonstrate higher accuracy and robustness compared to other studies. The contributions of this study are primarily about the improvement of the EEG-based emotion classification accuracy. There is a potential restriction of how generic the results can be as different EEG dataset might yield different results for the same framework. Therefore, experimenting with different EEG dataset and testing alternative feature selection schemes can be very interesting for future work.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Hao Chao ◽  
Liang Dong ◽  
Yongli Liu ◽  
Baoyun Lu

Emotion recognition based on multichannel electroencephalogram (EEG) signals is a key research area in the field of affective computing. Traditional methods extract EEG features from each channel based on extensive domain knowledge and ignore the spatial characteristics and global synchronization information across all channels. This paper proposes a global feature extraction method that encapsulates the multichannel EEG signals into gray images. The maximal information coefficient (MIC) for all channels was first measured. Subsequently, an MIC matrix was constructed according to the electrode arrangement rules and represented by an MIC gray image. Finally, a deep learning model designed with two principal component analysis convolutional layers and a nonlinear transformation operation extracted the spatial characteristics and global interchannel synchronization features from the constructed feature images, which were then input to support vector machines to perform the emotion recognition tasks. Experiments were conducted on the benchmark dataset for emotion analysis using EEG, physiological, and video signals. The experimental results demonstrated that the global synchronization features and spatial characteristics are beneficial for recognizing emotions and the proposed deep learning model effectively mines and utilizes the two salient features.


2019 ◽  
Vol 18 (04) ◽  
pp. 1359-1378
Author(s):  
Jianzhuo Yan ◽  
Hongzhi Kuai ◽  
Jianhui Chen ◽  
Ning Zhong

Emotion recognition is a highly noteworthy and challenging work in both cognitive science and affective computing. Currently, neurobiology studies have revealed the partially synchronous oscillating phenomenon within brain, which needs to be analyzed from oscillatory synchronization. This combination of oscillations and synchronism is worthy of further exploration to achieve inspiring learning of the emotion recognition models. In this paper, we propose a novel approach of valence and arousal-based emotion recognition using EEG data. First, we construct the emotional oscillatory brain network (EOBN) inspired by the partially synchronous oscillating phenomenon for emotional valence and arousal. And then, a coefficient of variation and Welch’s [Formula: see text]-test based feature selection method is used to identify the core pattern (cEOBN) within EOBN for different emotional dimensions. Finally, an emotional recognition model (ERM) is built by combining cEOBN-inspired information obtained in the above process and different classifiers. The proposed approach can combine oscillation and synchronization characteristics of multi-channel EEG signals for recognizing different emotional states under the valence and arousal dimensions. The cEOBN-based inspired information can effectively reduce the dimensionality of the data. The experimental results show that the previous method can be used to detect affective state at a reasonable level of accuracy.


Sign in / Sign up

Export Citation Format

Share Document