A soft error analysis tool for high-speed digital designs

Author(s):  
Jong Kang Park ◽  
Hyun Suk Choi ◽  
Jong Tae Kim
Author(s):  
Yongmei Liu ◽  
Rajen Dias

Abstract Study presented here has shown that Infrared thermography has the potential to be a nondestructive analysis tool for evaluating package sublayer defects. Thermal imaging is achieved by applying pulsed external heating to the package surface and monitoring the surface thermal response as a function of time with a high-speed IR camera. Since the thermal response of the surface is affected by the defects such as voids and delamination below the package surface, the technique can be used to assist package defects detection and analysis.


2011 ◽  
Vol 197-198 ◽  
pp. 1599-1603
Author(s):  
Zhen Wei Wang ◽  
Ping An Du ◽  
Ya Ting Yu

Mechanical components are subjected heavy alternate load in industries, such as engine crankshaft, wheel axle, etc. The fatigue failure happens after a long work loading, which affects the production cost, safe and time. So the fatigue life predication is fundamental for the mechanical components design. Especially, it is very important for heavy, high-speed machinery. In this paper, both main fatigue life predication formulas are introduced briefly, including Manson-Coffinn formula and Damage strain model. Then, shortages of above life predication formulas are pointed out, and coefficients are explained in detail. Further calculation error analysis is conducted on the basis of experiments on 16 materials. Results show that above life predication formulas lack calculation accuracy. Finally, it is pointed out that coefficients of fatigue life predication formulas are dependent of material performance. So it is unreliable that coefficients are constants for Manson-Coffin and Damage strain model.


2021 ◽  
pp. 1-12
Author(s):  
Piero Danieli ◽  
Massimo Masi ◽  
Giovanni Delibra ◽  
Alessandro Corsini ◽  
Andrea Lazzaretto

Abstract This work deals with the application of the open source CFD code MULTALL to the analysis of tube-axial-fans. The code has been widely validated in the literature for high-speed turbomachine flows but not applied yet to low speed tutbomachines. The aim of this work is to assess the degree of reliability of MULTALL as a tool for simulating the internal flow in industrial axial-flow fan rotors. To this end, the predictions of the steady-state air flow field in the annular sector of a 315 mm tube-axial fan obtained by MULTALL 18.3 are compared with those obtained by two state-of-the-art CFD codes and experimental data of the global aerodynamic performance of the fan and the pitch-wise averaged velocity distribution downstream of the rotor. All the steady-state RANS calculations were performed on either fully structured hexahedron or hexa-dominant grids using classical formulations of algebraic turbulence models. The pressure curve and the trend of the aeraulic efficiency in the stable operation range of the fan predicted by MULTALL show very good agreement with both the experimental data and the other CFD results. Although the estimation of the fan efficiency predicted by MULTALL can be noticeably improved by the more sophisticated state-of-the-art CFD codes, the analysis of the velocity distribution at the rotor exit supports the use of MULTALL as a reliable CFD analysis tool for designers of low-speed axial fans.


Sign in / Sign up

Export Citation Format

Share Document