scholarly journals Fast non-monte-carlo transient noise analysis for high-precision analog/RF circuits by stochastic orthogonal polynomials

Author(s):  
Fang Gong ◽  
Hao Yu ◽  
Lei He
2021 ◽  
Vol 26 ◽  
pp. 100862
Author(s):  
Abrar Hussain ◽  
Lihao Yang ◽  
Shifeng Mao ◽  
Bo Da ◽  
Károly Tőkési ◽  
...  

2010 ◽  
Vol 03 (02) ◽  
pp. 91-102 ◽  
Author(s):  
TING LI ◽  
HUI GONG ◽  
QINGMING LUO

The Monte Carlo code MCML (Monte Carlo modeling of light transport in multi-layered tissue) has been the gold standard for simulations of light transport in multi-layer tissue, but it is ineffective in the presence of three-dimensional (3D) heterogeneity. New techniques have been attempted to resolve this problem, such as MCLS, which is derived from MCML, and tMCimg, which draws upon image datasets. Nevertheless, these approaches are insufficient because of their low precision or simplistic modeling. We report on the development of a novel model for photon migration in voxelized media (MCVM) with 3D heterogeneity. Voxel crossing detection and refractive-index-unmatched boundaries were considered to improve the precision and eliminate dependence on refractive-index-matched tissue. Using a semi-infinite homogeneous medium, steady-state and time-resolved simulations of MCVM agreed well with MCML, with high precision (~100%) for the total diffuse reflectance and total fractional absorption compared to those of tMCimg (< 70%). Based on a refractive-index-matched heterogeneous skin model, the results of MCVM were found to coincide with those of MCLS. Finally, MCVM was applied to a two-layered sphere with multi-inclusions, which is an example of a 3D heterogeneous media with refractive-index-unmatched boundaries. MCVM provided a reliable model for simulation of photon migration in voxelized 3D heterogeneous media, and it was developed to be a flexible and simple software tool that delivers high-precision results.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Thomas Mannel ◽  
Muslem Rahimi ◽  
K. Keri Vos

Abstract The determination of the CKM element Vcb from inclusive semileptonic b → cℓ$$ \overline{\nu} $$ ν ¯ decays has reached a high precision thanks to a combination of theoretical and experimental efforts. Aiming towards even higher precision, we discuss two processes that contaminate the inclusive Vcb determination; the b → u background and the contribution of the tauonic mode: b → c(τ → μν$$ \overline{\nu} $$ ν ¯ )$$ \overline{\nu} $$ ν ¯ . Both of these contributions are dealt with at the experimental side, using Monte-Carlo methods and momentum cuts. However, these contributions can be calculated with high precision within the Heavy-Quark Expansion. In this note, we calculate the theoretical predictions for these two processes. We compare our b → u results qualitatively with generator-level Monte-Carlo data used at Belle and Belle II. Finally, we suggest to change the strategy for the extraction of Vcb by comparing the data on B → Xℓ directly with the theoretical expressions, to which our paper facilitates.


2019 ◽  
Vol 490 (4) ◽  
pp. 4666-4687 ◽  
Author(s):  
B B P Perera ◽  
M E DeCesar ◽  
P B Demorest ◽  
M Kerr ◽  
L Lentati ◽  
...  

ABSTRACT In this paper, we describe the International Pulsar Timing Array second data release, which includes recent pulsar timing data obtained by three regional consortia: the European Pulsar Timing Array, the North American Nanohertz Observatory for Gravitational Waves, and the Parkes Pulsar Timing Array. We analyse and where possible combine high-precision timing data for 65 millisecond pulsars which are regularly observed by these groups. A basic noise analysis, including the processes which are both correlated and uncorrelated in time, provides noise models and timing ephemerides for the pulsars. We find that the timing precisions of pulsars are generally improved compared to the previous data release, mainly due to the addition of new data in the combination. The main purpose of this work is to create the most up-to-date IPTA data release. These data are publicly available for searches for low-frequency gravitational waves and other pulsar science.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2746 ◽  
Author(s):  
Dragos Constantin Popescu ◽  
Ioan Dumitrache ◽  
Simona Iuliana Caramihai ◽  
Mihail Octavian Cernaianu

The paper addresses the problem of fusing the measurements from multiple cameras in order to estimate the position of fiducial markers. The objectives are to increase the precision and to extend the working area of the system. The proposed fusion method employs an adaptive Kalman algorithm which is used for calibrating the setup of cameras as well as for estimating the pose of the marker. Special measures are taken in order to mitigate the effect of the measurement noise. The proposed method is further tested in different scenarios using a Monte Carlo simulation, whose qualitative precision results are determined and compared. The solution is designed for specific positioning and alignment tasks in physics experiments, but also, has a degree of generality that makes it suitable for a wider range of applications.


1993 ◽  
Vol 48 (10) ◽  
pp. 7419-7433 ◽  
Author(s):  
Wolfhard Janke ◽  
Klaus Nather

2013 ◽  
Vol 88 (4) ◽  
Author(s):  
Junfeng Wang ◽  
Zongzheng Zhou ◽  
Qingquan Liu ◽  
Timothy M. Garoni ◽  
Youjin Deng

Sign in / Sign up

Export Citation Format

Share Document