scholarly journals Representing a cubic graph as the intersection graph of axis-parallel boxes in three dimensions

Author(s):  
Abhijin Adiga ◽  
Sunil L. Chandran
Author(s):  
István Tomon ◽  
Dmitriy Zakharov

Abstract In this short note, we prove the following analog of the Kővári–Sós–Turán theorem for intersection graphs of boxes. If G is the intersection graph of n axis-parallel boxes in $${{\mathbb{R}}^d}$$ such that G contains no copy of K t,t , then G has at most ctn( log n)2d+3 edges, where c = c(d)>0 only depends on d. Our proof is based on exploring connections between boxicity, separation dimension and poset dimension. Using this approach, we also show that a construction of Basit, Chernikov, Starchenko, Tao and Tran of K2,2-free incidence graphs of points and rectangles in the plane can be used to disprove a conjecture of Alon, Basavaraju, Chandran, Mathew and Rajendraprasad. We show that there exist graphs of separation dimension 4 having superlinear number of edges.


2020 ◽  
Vol 20 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Marilyn Breen

AbstractLet 𝒞 be a finite family of distinct axis-parallel boxes in ℝd whose intersection graph is a tree, and let S = ⋃{C : C in 𝒞}. If every two points of S see a common point of S via k-staircase paths, then S is starshaped via k-staircase paths. Moreover, the k-staircase kernel of S will be convex via k-staircases.


1985 ◽  
Vol 249 (6) ◽  
pp. G800-G806 ◽  
Author(s):  
A. J. Bauer ◽  
N. G. Publicover ◽  
K. M. Sanders

Electrical slow waves recorded from circular muscle cells near the myenteric and submucosal plexuses were found to be significantly different. By measuring the latencies between the arrival of evoked events at two recording sites, slow wave conduction velocities were determined in the three dimensions of circular muscle. Slow waves propagated more rapidly in the axis parallel to the circular fibers than in the axes perpendicular to the circular fibers. The rates of slow wave propagation were also determined in axes parallel and perpendicular to fibers in myenteric and submucosal circular muscles. Slow waves conducted more slowly in the circular muscle near the submucosa than in circular muscle near the myenteric plexus. From conduction velocity measurements, a technique was developed to determine the pacemaker site of spontaneous slow waves in a muscle strip. These data demonstrate that slow waves originate from multiple discrete foci; in muscle strips cut along the long axis of the stomach, these foci are found predominantly in the orad region of the muscle strip; and slow waves originate in the outer myenteric half of the muscle.


2005 ◽  
Vol 4 (2) ◽  
pp. 96-113 ◽  
Author(s):  
Jinwook Seo ◽  
Ben Shneiderman

Interactive exploration of multidimensional data sets is challenging because: (1) it is difficult to comprehend patterns in more than three dimensions, and (2) current systems often are a patchwork of graphical and statistical methods leaving many researchers uncertain about how to explore their data in an orderly manner. We offer a set of principles and a novel rank-by-feature framework that could enable users to better understand distributions in one (1D) or two dimensions (2D), and then discover relationships, clusters, gaps, outliers, and other features. Users of our framework can view graphical presentations (histograms, boxplots, and scatterplots), and then choose a feature detection criterion to rank 1D or 2D axis-parallel projections. By combining information visualization techniques (overview, coordination, and dynamic query) with summaries and statistical methods users can systematically examine the most important 1D and 2D axis-parallel projections. We summarize our Graphics, Ranking, and Interaction for Discovery (GRID) principles as: (1) study 1D, study 2D, then find features (2) ranking guides insight, statistics confirm. We implemented the rank-by-feature framework in the Hierarchical Clustering Explorer, but the same data exploration principles could enable users to organize their discovery process so as to produce more thorough analyses and extract deeper insights in any multidimensional data application, such as spreadsheets, statistical packages, or information visualization tools.


Author(s):  
P.J. Lea ◽  
M.J. Hollenberg

Our current understanding of mitochondrial ultrastructure has been derived primarily from thin sections using transmission electron microscopy (TEM). This information has been extrapolated into three dimensions by artist's impressions (1) or serial sectioning techniques in combination with computer processing (2). The resolution of serial reconstruction methods is limited by section thickness whereas artist's impressions have obvious disadvantages.In contrast, the new techniques of HRSEM used in this study (3) offer the opportunity to view simultaneously both the internal and external structure of mitochondria directly in three dimensions and in detail.The tridimensional ultrastructure of mitochondria from rat hepatocytes, retinal (retinal pigment epithelium), renal (proximal convoluted tubule) and adrenal cortex cells were studied by HRSEM. The specimens were prepared by aldehyde-osmium fixation in combination with freeze cleavage followed by partial extraction of cytosol with a weak solution of osmium tetroxide (4). The specimens were examined with a Hitachi S-570 scanning electron microscope, resolution better than 30 nm, where the secondary electron detector is located in the column directly above the specimen inserted within the objective lens.


Author(s):  
P. E. Batson ◽  
C. H. Chen ◽  
J. Silcox

We wish to report in this paper measurements of the inelastic scattering component due to the collective excitations (plasmons) and single particlehole excitations of the valence electrons in Al. Such scattering contributes to the diffuse electronic scattering seen in electron diffraction patterns and has recently been considered of significance in weak-beam images (see Gai and Howie) . A major problem in the determination of such scattering is the proper correction for multiple scattering. We outline here a procedure which we believe suitably deals with such problems and report the observed single scattering spectrum.In principle, one can use the procedure of Misell and Jones—suitably generalized to three dimensions (qx, qy and #x2206;E)--to derive single scattering profiles. However, such a computation becomes prohibitively large if applied in a brute force fashion since the quasi-elastic scattering (and associated multiple electronic scattering) extends to much larger angles than the multiple electronic scattering on its own.


Author(s):  
William P. Wergin ◽  
Eric F. Erbe

The eye-brain complex allows those of us with normal vision to perceive and evaluate our surroundings in three-dimensions (3-D). The principle factor that makes this possible is parallax - the horizontal displacement of objects that results from the independent views that the left and right eyes detect and simultaneously transmit to the brain for superimposition. The common SEM micrograph is a 2-D representation of a 3-D specimen. Depriving the brain of the 3-D view can lead to erroneous conclusions about the relative sizes, positions and convergence of structures within a specimen. In addition, Walter has suggested that the stereo image contains information equivalent to a two-fold increase in magnification over that found in a 2-D image. Because of these factors, stereo pair analysis should be routinely employed when studying specimens.Imaging complementary faces of a fractured specimen is a second method by which the topography of a specimen can be more accurately evaluated.


Author(s):  
J. A. Eades ◽  
A. E. Smith ◽  
D. F. Lynch

It is quite simple (in the transmission electron microscope) to obtain convergent-beam patterns from the surface of a bulk crystal. The beam is focussed onto the surface at near grazing incidence (figure 1) and if the surface is flat the appropriate pattern is obtained in the diffraction plane (figure 2). Such patterns are potentially valuable for the characterization of surfaces just as normal convergent-beam patterns are valuable for the characterization of crystals.There are, however, several important ways in which reflection diffraction from surfaces differs from the more familiar electron diffraction in transmission.GeometryIn reflection diffraction, because of the surface, it is not possible to describe the specimen as periodic in three dimensions, nor is it possible to associate diffraction with a conventional three-dimensional reciprocal lattice.


Author(s):  
Kent McDonald ◽  
David Mastronarde ◽  
Rubai Ding ◽  
Eileen O'Toole ◽  
J. Richard McIntosh

Mammalian spindles are generally large and may contain over a thousand microtubules (MTs). For this reason they are difficult to reconstruct in three dimensions and many researchers have chosen to study the smaller and simpler spindles of lower eukaryotes. Nevertheless, the mammalian spindle is used for many experimental studies and it would be useful to know its detailed structure.We have been using serial cross sections and computer reconstruction methods to analyze MT distributions in mitotic spindles of PtK cells, a mammalian tissue culture line. Images from EM negatives are digtized on a light box by a Dage MTI video camera containing a black and white Saticon tube. The signal is digitized by a Parallax 1280 graphics device in a MicroVax III computer. Microtubules are digitized at a magnification such that each is 10-12 pixels in diameter.


Sign in / Sign up

Export Citation Format

Share Document