Point of interest to region of interest conversion

Author(s):  
Victor de Graaff ◽  
Rolf A. de By ◽  
Maurice van Keulen ◽  
Jan Flokstra
2019 ◽  
Vol 8 (6) ◽  
pp. 287 ◽  
Author(s):  
Zhu ◽  
Wu ◽  
Chen ◽  
Jing

The tremendous advance in information technology has promoted the rapid development of location-based services (LBSs), which play an indispensable role in people’s daily lives. Compared with a traditional LBS based on Point-Of-Interest (POI), which is an isolated location point, an increasing number of demands have concentrated on Region-Of-Interest (ROI) exploration, i.e., geographic regions that contain many POIs and express rich environmental information. The intention behind the POI is to search the geographical regions related to the user’s requirements, which contain some spatial objects, such as POIs and have certain environmental characteristics. In order to achieve effective ROI exploration, we propose an ROI top-k keyword query method that considers the environmental information of the regions. Specifically, the Word2Vec model has been introduced to achieve the distributed representation of POIs and capture their environmental semantics, which are then leveraged to describe the environmental characteristic information of the candidate ROI. Given a keyword query, different query patterns are designed to measure the similarities between the query keyword and the candidate ROIs to find the k candidate ROIs that are most relevant to the query. In the verification step, an evaluation criterion has been developed to test the effectiveness of the distributed representations of POIs. Finally, after generating the POI vectors in high quality, we validated the performance of the proposed ROI top-k query on a large-scale real-life dataset where the experimental results demonstrated the effectiveness of our proposals.


Author(s):  
R.J. Mount ◽  
R.V. Harrison

The sensory end organ of the ear, the organ of Corti, rests on a thin basilar membrane which lies between the bone of the central modiolus and the bony wall of the cochlea. In vivo, the organ of Corti is protected by the bony wall which totally surrounds it. In order to examine the sensory epithelium by scanning electron microscopy it is necessary to dissect away the protective bone and expose the region of interest (Fig. 1). This leaves the fragile organ of Corti susceptible to physical damage during subsequent handling. In our laboratory cochlear specimens, after dissection, are routinely prepared by the O-T- O-T-O technique, critical point dried and then lightly sputter coated with gold. This processing involves considerable specimen handling including several hours on a rotator during which the organ of Corti is at risk of being physically damaged. The following procedure uses low cost, readily available materials to hold the specimen during processing ,preventing physical damage while allowing an unhindered exchange of fluids.Following fixation, the cochlea is dehydrated to 70% ethanol then dissected under ethanol to prevent air drying. The holder is prepared by punching a hole in the flexible snap cap of a Wheaton vial with a paper hole punch. A small amount of two component epoxy putty is well mixed then pushed through the hole in the cap. The putty on the inner cap is formed into a “cup” to hold the specimen (Fig. 2), the putty on the outside is smoothed into a “button” to give good attachment even when the cap is flexed during handling (Fig. 3). The cap is submerged in the 70% ethanol, the bone at the base of the cochlea is seated into the cup and the sides of the cup squeezed with forceps to grip it (Fig.4). Several types of epoxy putty have been tried, most are either soluble in ethanol to some degree or do not set in ethanol. The only putty we find successful is “DUROtm MASTERMENDtm Epoxy Extra Strength Ribbon” (Loctite Corp., Cleveland, Ohio), this is a blue and yellow ribbon which is kneaded to form a green putty, it is available at many hardware stores.


Author(s):  
Gisèle Nicolas ◽  
Jean-Marie Bassot ◽  
Marie-Thérèse Nicolas

The use of fast-freeze fixation (FFF) followed by freeze-substitution (FS) brings substantial advantages which are due to the extreme rapidity of this fixation compared to the conventional one. The initial step, FFF, physically immobilizes most molecules and therefore arrests the biological reactions in a matter of milliseconds. The second step, FS, slowly removes the water content still in solid state and, at the same time, chemically fixes the other cell components in absence of external water. This procedure results in an excellent preservation of the ultrastructure, avoids osmotic artifacts,maintains in situ most soluble substances and keeps up a number of cell activities including antigenicities. Another point of interest is that the rapidity of the initial immobilization enables the capture of unstable structures which, otherwise, would slip towards a more stable state. When combined with electrophysiology, this technique arrests the ultrastructural modifications at a well defined state, allowing a precise timing of the events.We studied the epithelium of the elytra of the scale-worm, Harmothoe lunulata which has excitable, conductible and bioluminescent properties. The intracellular sites of the light emission are paracrystals of endoplasmic reticulum (PER), named photosomes (Fig.1). They are able to flash only when they are coupled with plasma membrane infoldings by dyadic or triadic junctions (Fig.2) basically similar to those of the striated muscle fibers. We have studied them before, during and after stimulation. FFF-FS showed that these complexes are labile structures able to diffentiate and dedifferentiate within milliseconds. Moreover, a transient network of endoplasmic reticulum was captured which we have named intermediate endoplasmic reticulum (IER) surrounding the PER (Fig.1). Numerous gap junctions are found in the membranous infoldings of the junctional complexes (Fig.3). When cryofractured, they cleave unusually (Fig.4-5). It is tempting to suggest that they play an important role in the conduction of the excitation.


2004 ◽  
Vol 43 (06) ◽  
pp. 185-189 ◽  
Author(s):  
J. T. Kuikka

Summary Aim: Serotonin transporter (SERT) imaging can be used to study the role of regional abnormalities of neurotransmitter release in various mental disorders and to study the mechanism of action of therapeutic drugs or drugs’ abuse. We examine the quantitative accuracy and reproducibility that can be achieved with high-resolution SPECT of serotonergic neurotransmission. Method: Binding potential (BP) of 123I labeled tracer specific for midbrain SERT was assessed in 20 healthy persons. The effects of scatter, attenuation, partial volume, mis-registration and statistical noise were estimated using phantom and human studies. Results: Without any correction, BP was underestimated by 73%. The partial volume error was the major component in this underestimation whereas the most critical error for the reproducibility was misplacement of region of interest (ROI). Conclusion: The proper ROI registration, the use of the multiple head gamma camera with transmission based scatter correction introduce more relevant results. However, due to the small dimensions of the midbrain SERT structures and poor spatial resolution of SPECT, the improvement without the partial volume correction is not great enough to restore the estimate of BP to that of the true one.


2001 ◽  
Vol 40 (04) ◽  
pp. 107-110 ◽  
Author(s):  
B. Roßmüller ◽  
S. Alalp ◽  
S. Fischer ◽  
S. Dresel ◽  
K. Hahn ◽  
...  

SummaryFor assessment of differential renal function (PF) by means of static renal scintigraphy with Tc-99m-dimer-captosuccinic acid (DMSA) the calculation of the geometric mean of counts from the anterior and posterior view is recommended. Aim of this retrospective study was to find out, if the anterior view is necessary to receive an accurate differential renal function by calculating the geometric mean compared to calculating PF using the counts of the posterior view only. Methods: 164 DMSA-scans of 151 children (86 f, 65 m) aged 16 d to 16 a (4.7 ± 3.9 a) were reviewed. The scans were performed using a dual head gamma camera (Picker Prism 2000 XP, low energy ultra high resolution collimator, matrix 256 x 256,300 kcts/view, Zoom: 1.6-2.0). Background corrected values from both kidneys anterior and posterior were obtained. Using region of interest technique PF was calculated using the counts of the dorsal view and compared with the calculated geometric mean [SQR(Ctsdors x Ctsventr]. Results: The differential function of the right kidney was significantly less when compared to the calculation of the geometric mean (p<0.01). The mean difference between the PFgeom and the PFdors was 1.5 ± 1.4%. A difference > 5% (5.0-9.5%) was obtained in only 6/164 scans (3.7%). Three of 6 patients presented with an underestimated PFdors due to dystopic kidneys on the left side in 2 patients and on the right side in one patient. The other 3 patients with a difference >5% did not show any renal abnormality. Conclusion: The calculation of the PF from the posterior view only will give an underestimated value of the right kidney compared to the calculation of the geometric mean. This effect is not relevant for the calculation of the differntial renal function in orthotopic kidneys, so that in these cases the anterior view is not necesssary. However, geometric mean calculation to obtain reliable values for differential renal function should be applied in cases with an obvious anatomical abnormality.


2000 ◽  
Vol 39 (05) ◽  
pp. 121-126 ◽  
Author(s):  
R. Werz ◽  
P. Reuland

Summary Aim of the study was to find out wether there is a common stop of growth of mandibular bone, so that no individual determination of the optimal time for surgery in patients with asymmetric mandibular bone growth is needed. As there are no epiphyseal plates in the mandibular bone, stop of growth cannot be determined on X-ray films. Methods: Bone scans of 731 patients [687 patients (324 male, 363 female) under 39 y for exact determination of end of growth and 44 (21 male, 23 female) patients over 40 y for evaluation of nongrowth dependant differences in tracer uptake] were reviewed for the study. All the patients were examined 3 hours after injection of 99mTc-DPD. Tracer uptake was measured by region of interest technique in different points of the mandibular bone and in several epiphyseal plates of extremities. Results: Tracer uptake in different epiphyseal plates of the extremities shows strong variation with age and good correlation with reported data of bone growth and closure of the epiphyseal plates. The relative maximum of bone activity is smaller in mandibular bone than in epiphyseal plates, which show well defined peaks, ending at 15-18 years in females and at 18-21 years in males. In contrast, mandibular bone shows no well defined end of growing but a gradually reduction of bone activity which remains higher than bone activity in epiphyseal plates over several years. Conclusion: No well defined end of growth of mandibular bone exists. The optimal age for surgery of asymmetric mandibular bone growth is not before the middle of the third decade of life, bone scans performed earlier for determination of bone growth can be omitted. Bone scans performed at the middle of the third decade of life help to optimize the time of surgical intervention.


1987 ◽  
Vol 26 (02) ◽  
pp. 87-92 ◽  
Author(s):  
A. Verbruggen ◽  
C. De Bakker ◽  
A. Vandecruys ◽  
J. Joosten ◽  
A. Nevelsteen ◽  
...  

The action of antithrombotic drugs can be evaluated by measuring the deposition of111In-labelled platelets on peripheral bypass grafts several days after injection. This evaluation can be performed qualitatively (visual interpretation on the daily images) or quantitatively. Four different methods which calculate the ratio of platelet uptake with a reference region are compared: two methods use a gamma camera and two a detector. A blood sample or the region under the sternal angle are used as reference. The daily ratio of the counts, recorded by a gamma camera in a region of interest covering the graft, and the blood radioactivity interpolated from a platelet survival curve appears to be the most reliable method. The information of all the ratios can be combined in a single thrombogenicity index which reflects the daily rise of a linear or exponential regression versus time.


1990 ◽  
Vol 29 (04) ◽  
pp. 170-176 ◽  
Author(s):  
M. V. Yester ◽  
Eva Dubovsky ◽  
C. D. Russell

Renal parenchymal transit time of the recently introduced radiopharmaceutical 99mTc-MAG3 (mercaptoacetylglycylglylcylglycinel) was measured in 37 kidneys, using factor analysis to separate parenchymal activity from that in the collecting system. A new factor algorithm was employed, based on prior interpolative background subtraction and use of the fact that the initial slope of the collecting system factor time-activity curve must be zero. The only operator intervention required was selection of a rectangular region enclosing the kidney (by identifying two points at opposite corners). Transit time was calculated from the factor time-activity curves both by deconvolution of the parenchymal factor curve and also by measuring the appearance time for collecting system activity from the collecting system factor curve. There was substantial agreement between the two methods. Factor analysis led to a narrower range of normal values than a conventional cortical region-of-interest method, presumably by decreasing crosstalk from the collecting system. In preliminary trials, the parenchymal transit time did not well separate four obstructed from seventeen unobstructed kidneys, but it successfully (p <0.05) separated six transplanted kidneys with acute rejection or acute tubular necrosis from 10 normal transplants.


Sign in / Sign up

Export Citation Format

Share Document