Learning Features from Large-Scale, Noisy and Social Image-Tag Collection

Author(s):  
Hanwang Zhang ◽  
Xindi Shang ◽  
Huanbo Luan ◽  
Yang Yang ◽  
Tat-Seng Chua
Keyword(s):  
Author(s):  
David J. Crandall ◽  
Yunpeng Li ◽  
Stefan Lee ◽  
Daniel P. Huttenlocher
Keyword(s):  

2020 ◽  
Vol 130 ◽  
pp. 174-181 ◽  
Author(s):  
Hui Cui ◽  
Lei Zhu ◽  
Chaoran Cui ◽  
Xiushan Nie ◽  
Huaxiang Zhang

2021 ◽  
Vol 21 (3) ◽  
pp. 1-17
Author(s):  
Feiran Huang ◽  
Chaozhuo Li ◽  
Boyu Gao ◽  
Yun Liu ◽  
Sattam Alotaibi ◽  
...  

The analysis for social networks, such as the socially connected Internet of Things, has shown a deep influence of intelligent information processing technology on industrial systems for Smart Cities. The goal of social media representation learning is to learn dense, low-dimensional, and continuous representations for multimodal data within social networks, facilitating many real-world applications. Since social media images are usually accompanied by rich metadata (e.g., textual descriptions, tags, groups, and submitted users), simply modeling the image is not effective to learn the comprehensive information from social media images. In this work, we treat the image and its textual description as multimodal content, and transform other metainformation into the links between contents (such as two images marked by the same tag or submitted by the same user). Based on the multimodal content and social links, we propose a Deep Attentive Multimodal Graph Embedding model named DAMGE for more effective social image representation learning. We introduce both small- and large-scale datasets to conduct extensive experiments, of which the results confirm the superiority of the proposal on the tasks of social image classification and link prediction.


2020 ◽  
Vol 29 ◽  
pp. 1271-1284 ◽  
Author(s):  
Hui Cui ◽  
Lei Zhu ◽  
Jingjing Li ◽  
Yang Yang ◽  
Liqiang Nie

1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Sign in / Sign up

Export Citation Format

Share Document