Adaptive Control for Revolute Joints Robot Manipulator with Uncertain/Unknown Dynamic Parameters and in Presence of Disturbance in Control Input

Author(s):  
Masoud Seyed Sakha ◽  
Hamid Reza Shaker
2013 ◽  
Vol 25 (4) ◽  
pp. 737-747 ◽  
Author(s):  
Munadi ◽  
◽  
Tomohide Naniwa ◽  

This paper presents an experimental study to verify an adaptive dominant type hybrid adaptive and learning controller for acquiring an accurate trajectory tracking of periodic desired trajectory of robot manipulators. The proposed controller is developed based on combining the model-based adaptive control (MBAC), repetitive learning control (RLC) and proportionalderivative (PD) control in which the MBAC input becomes dominant than other inputs. Dominance of adaptive control input gives the advantage that the proposed controller could adjust the feed-forward motion control input immediately after changing the desired motion or load of the manipulator. In motion control law, the proposed controller uses only one vector to estimate the unknown dynamical parameters. It makes the proposed controller as a simpler hybrid adaptive and learning controller which does not need much computational power and also is easily be implemented for real applications of robot manipulators. The proposed controller is verified through experiments on a four-link small robot manipulator as representation of a scale robot manipulator to ensure this controller can be applied in the real applications of robot manipulators. The experimental results show the effectiveness of the proposed controller by indicating the position tracking error approaches to zero.


Author(s):  
Dongya Zhao ◽  
Sarah K Spurgeon ◽  
Hao Liang ◽  
Shaoyuan Li ◽  
Quanmin Zhu

In this study, a new terminal converging adaptive control approach with bounded control inputs is developed for the 6-degree-of-freedom parallel robot manipulator. The non-smooth feedback control principle is combined with particular bounded functions to define both the control input and associated adaptive law. The Lyapunov method is used to present a stability analysis in order to prove that the error trajectories are semi-globally asymptotically stable. Numerical simulation results relating to a 6-degree-of-freedom parallel robot are presented to validate the effectiveness of the proposed approach and to compare the performance obtained with other candidate control schemes. It is shown that the proposed scheme achieves more rapid error convergence and exhibits improved robustness while guaranteeing that the control signal remains within known bounds.


Author(s):  
Withit Chatlatanagulchai ◽  
Peter H. Meckl

Flexibility at the joint of a manipulator is an intrinsic property. Even “rigid-joint” robots, in fact, possess a certain amount of flexibility. Previous experiments confirmed that joint flexibility should be explicitly included in the model when designing a high-performance controller for a manipulator because the flexibility, if not dealt with, can excite system natural frequencies and cause severe damage. However, control design for a flexible-joint robot manipulator is still an open problem. Besides being described by a complicated system model for which the passivity property does not hold, the manipulator is also underactuated, that is, the control input does not drive the link directly, but through the flexible dynamics. Our work offers another possible solution to this open problem. We use three-layer neural networks to represent the system model. Their weights are adapted in real time and from scratch, which means we do not need the mathematical model of the robot in our control algorithm. All uncertainties are handled by variable-structure control. Backstepping structure allows input efforts to be applied to each subsystem where they are needed. Control laws to adjust all adjustable parameters are devised using Lyapunov’s second method to ensure that error trajectories are globally uniformly ultimately bounded. We present two state-feedback schemes: first, when neural networks are used to represent the unknown plant, and second, when neural networks are used to represent the unknown parts of the control laws. In the former case, we also design an observer to enable us to design a control law using only output signals—the link positions. We use simulations to compare our algorithms with some other well-known techniques. We use experiments to demonstrate the practicality of our algorithms.


1993 ◽  
Vol 26 (2) ◽  
pp. 31-34 ◽  
Author(s):  
Weining Feng ◽  
I. Postlethwaite

Author(s):  
Alexander Bertino ◽  
Peiman Naseradinmousavi ◽  
Atul Kelkar

Abstract In this paper, we study the analytical and experimental control of a 7-DOF robot manipulator. A model-free decentralized adaptive control strategy is presented for the tracking control of the manipulator. The problem formulation and experimental results demonstrate the computational efficiency and simplicity of the proposed method. The results presented here are one of the first known experiments on a redundant 7-DOF robot. The efficacy of the adaptive decentralized controller is demonstrated experimentally by using the Baxter robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the versatility, tracking performance, and computational efficiency of this method.


Author(s):  
Ozan Temiz ◽  
Melih Cakmakci ◽  
Yildiray Yildiz

This paper presents an integrated fault-tolerant adaptive control allocation strategy for four wheel frive - four wheel steering ground vehicles to increase yaw stability. Conventionally, control of brakes, motors and steering angles are handled separately. In this study, these actuators are controlled simultaneously using an adaptive control allocation strategy. The overall structure consists of two steps: At the first level, virtual control input consisting of the desired traction force, the desired moment correction and the required lateral force correction to maintain driver’s intention are calculated based on the driver’s steering and throttle input and vehicle’s side slip angle. Then, the allocation module determines the traction forces at each wheel, front steering angle correction and rear steering wheel angle, based on the virtual control input. Proposed strategy is validated using a non-linear three degree of freedom reduced two-track vehicle model and results demonstrate that the vehicle can successfully follow the reference motion while protecting yaw stability, even in the cases of device failure and changed road conditions.


Robotica ◽  
2014 ◽  
Vol 33 (10) ◽  
pp. 2100-2113 ◽  
Author(s):  
Bolin Liao ◽  
Weijun Liu

SUMMARYIn this paper, a pseudoinverse-type bi-criteria minimization scheme is proposed and investigated for the redundancy resolution of robot manipulators at the joint-acceleration level. Such a bi-criteria minimization scheme combines the weighted minimum acceleration norm solution and the minimum velocity norm solution via a weighting factor. The resultant bi-criteria minimization scheme, formulated as the pseudoinverse-type solution, not only avoids the high joint-velocity and joint-acceleration phenomena but also causes the joint velocity to be near zero at the end of motion. Computer simulation results based on a 4-Degree-of-Freedom planar robot manipulator comprising revolute joints further verify the efficacy and flexibility of the proposed bi-criteria minimization scheme on robotic redundancy resolution.


Sign in / Sign up

Export Citation Format

Share Document